提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中地理必修1自然地理環(huán)境的整體性教案

  • 人教版新課標高中物理必修1速度變化快慢的描述─加速度說課稿2篇

    人教版新課標高中物理必修1速度變化快慢的描述─加速度說課稿2篇

    本來比較速度變化的快慢也有兩種方法:一種是比較相同時間內(nèi)速度變化量的大??;另一種是比較發(fā)生相同的速度變化所需要的時間長短。但教材是將比較質(zhì)點位置移動快慢的思想直接遷移過來,通過實例分析,使學生明白不同運動物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個變化所用時間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認為只要有加速度的運動速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運動的情景中討論。加速度的矢量性是一個難點,教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向為正方向,那么加速度就有正負之分,加速度的正負表示加速度的方向,不表示加速度的大小。

  • 人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律說課稿2篇

    人教版新課標高中物理必修1探究小車速度隨時間變化的規(guī)律說課稿2篇

    (三)合作交流能力提升教師:剛才我們通過實驗了解了小車的速度是怎樣隨時間變化的,但實驗中有一定的誤差,請同學們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個實驗小組的同學之間進行熱烈的討論)學生:測量出現(xiàn)誤差。因為點間距離太小,測量長度時容易產(chǎn)生誤差。教師:如何減小這個誤差呢?學生:如果測量較長的距離,誤差應該小一些。教師:應該采取什么辦法?學生:應該取幾個點之間的距離作為一個測量長度。教師:好,這就是常用的取“計數(shù)點”的方法。我們應該在紙帶上每隔幾個計時點取作一個計數(shù)點,進行編號。分別標為:0、1、2、3……,測各計數(shù)點到“0”的距離。以減小測量誤差。教師:還有補充嗎?學生1:我在坐標系中描點畫的圖象只集中在坐標原定附近,兩條圖象沒有明顯的分開。學生2:描出的幾個點不嚴格的分布在一條直線上,還能畫直線嗎?

  • 人教版高中語文必修3《愛的奉獻 學習議論中的記敘》說課稿

    人教版高中語文必修3《愛的奉獻 學習議論中的記敘》說課稿

    教學過程:(一)導入:課前放《愛的奉獻》歌曲,同時不斷播放一些有關(guān)“愛”的主題的圖片,渲染一種情感氛圍。師說:同學們,誰能說說這組圖片的主題應該是什么?生(七嘴八舌):母愛,不對是親情……是友情、還有人與人互相幫助……那組軍人圖片是說保衛(wèi)國家,應該是愛國……那徐本禹和感動中國呢?…………生答:是關(guān)于愛的方面師說:不錯,是關(guān)于愛的方面。那么同學們,今天就以“愛的奉獻”為話題,來寫一篇議論文如何?生答:老師,還是寫記敘文吧。生答:就是,要不議論文寫出來也象記敘文。師問:為什么?生答:老師,這個話題太有話說了,一舉例子就收不住了,怎么看怎么象記敘文。生答:就是,再用一點形容詞,就更象了。眾人樂。師說:那么同學們誰能告訴我,為什么會出現(xiàn)這種問題?一生小聲說:還不是我們笨,不會寫。師說:不是笨,也不是不會寫,你們想為什么記敘文就會寫,一到議論文就不會了,那是因為同學們沒有明白議論文中的記敘與記敘文中的記敘有什么不同,所以一寫起議論文中的記敘,還是按照記敘文的寫法寫作,這自然就不行了。那好,今天我們就從如何寫議論文中的記敘講起。

  • 人教版高中政治必修4時代的精神的精華說課稿

    人教版高中政治必修4時代的精神的精華說課稿

    (二)能力目標培養(yǎng)學生運用哲學理論觀察、分析、處理社會問題的能力,增強學生的時代感。(三)情感、態(tài)度與價值觀目標培養(yǎng)學生與時俱進的思想品質(zhì),讓學生關(guān)注時代、關(guān)注現(xiàn)實、關(guān)注生活,逐步樹立科學的世界觀、人生觀、價值觀。三、說教學重難點:時代精神的總結(jié)和升華是本框的難點,雖然學生在文化生活中學習了文化與經(jīng)濟政治的關(guān)系,但要讓學生得出哲學是時代精神的總結(jié)和升華,還要聯(lián)系前面關(guān)于哲學的基礎知識進行總結(jié)歸納,因此可能會難以把握,另外關(guān)于什么樣的哲學是真正的哲學的理解會稍有難度。社會變革的先導是本框的重點,一方面哲學源于時代,另一方面強調(diào)哲學反過來對時代又有重要的反作用,突出這一點能夠更好地激發(fā)學生學習哲學的熱情和信心,對于后面知識的學習是極為有益的,因此社會變革的先導這一目作重點處理。

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設計(1)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的圖像和性質(zhì)教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。

  • 兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關(guān)系教學設計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展說課稿

    人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展說課稿

    一、教材分析下面我來談一談對教材的認識:主要從教材的地位和作用、以及在此基礎上確立的教學目標、教學重難點這三個方面來談。首先,來談教材的地位和作用:本課教材內(nèi)容主要從三個方面向?qū)W生介紹了現(xiàn)代中國教育的發(fā)展狀況和趨勢:人民教育的奠基、動亂中的教育和教育的復興,全面講述了新中國教育的三個階段。本課是文化史中中國史部分的最后一課, 也是必修三冊書中唯一涉及教育的一課。而教育是思想文化史中的重要組成部分,江澤民同志在談到教育的時候曾經(jīng)說過,“百年大計,教育為本。教育為本,在于育人”。教育是關(guān)系國計民生的大事。學生通過學習新中國教育發(fā)展的史實,理解“科教興國”、“國運興衰,系于教育”的深刻含義。最終由此激發(fā)學生樹立“知識改變命運、讀書成就人生”的信念,樹立勤奮學習、成人成才、報效祖國、服務社會的崇高理想。故本課的教學有極大的現(xiàn)實意義。談完了教材的地位和作用,我再分析一下教學目標:

  • 人教版高中歷史必修3西方人文主義思想的起源說課稿

    人教版高中歷史必修3西方人文主義思想的起源說課稿

    蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時候到了,我將死,你們活下來,是誰的選擇好,只有天知道?!闭f畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對一個叫克力同的人說了這樣一番話。克力同,我告訴你,這幾天一直有一個神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正。……事實上你就要離開這里了。當你去死的時候,你是個犧牲品,但不是我們所犯錯誤的犧牲品,而是你同胞所犯錯誤的犧牲品。但你若用這種可恥的方法逃避,以錯還錯,以惡報惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應該傷害的,包括你自己、你的朋友、你的國家,還有我們。到那時,你活著面對我們的憤怒,你死后我們的兄弟、冥府里的法律也不會熱情歡迎你;因為它們知道你試圖盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧。”

  • 人教版高中政治必修2人民代表大會制度-我國的根本政治制度說課稿

    人教版高中政治必修2人民代表大會制度-我國的根本政治制度說課稿

    材料四:兩會結(jié)束后,全國人大常委會辦公廳將召開代表建議交辦會,將這些建議統(tǒng)一交由國務院有關(guān)部委、最高人民法院、最高人民檢察院等180個機關(guān)、單位辦理。】通過分組討論,請學生回答問題,我將做相應的點撥和補充:在人民代表大會與人民的關(guān)系上,從產(chǎn)生看,人民代表大會的代表由民主選舉產(chǎn)生,對人民負責,受人民監(jiān)督;從過程看,在人民代表大會的活動中,法律的制定和重大問題的決策,由人民代表充分討論,實行少數(shù)服從多數(shù)原則,民主決定;在人民代表大會與其他國家機關(guān)的關(guān)系上,人大是國家權(quán)力機關(guān),國家行政機關(guān)、審判機關(guān)、檢察機關(guān)都由它產(chǎn)生,對它負責,受它監(jiān)督。人大統(tǒng)一行使國家權(quán)力,它所決定的事情不是自己直接去辦,是由國家行政和司法等機關(guān)去貫徹執(zhí)行。請同學們根據(jù)剛所學的知識,將民主集中制原則的具體體現(xiàn),用表格形式進行歸納總結(jié),培養(yǎng)了學生歸納分析能了和獨立思考的能力。

  • 人教版高中政治必修4人的認識從何而來說課稿(一)

    人教版高中政治必修4人的認識從何而來說課稿(一)

    展示學習過的物理學內(nèi)容:伽利略的“比薩斜塔”實驗,證明了:兩個鐵球同時落地。得出結(jié)論:實踐是檢驗認識正確與否的唯一標準。(因為這點理解起來有點難,所一教師要適當?shù)闹v解)A、一種認識是否是真理不能由這一認識本身回答B(yǎng)、客觀事物自身也不能回答認識是否正確地反映了它C、實踐是聯(lián)系主觀與客觀的橋梁。人們把認識和實踐的結(jié)果對照,相符合,認識就正確?!?實踐是認識的目的和歸宿:走進社會:(課本P46歸國博士案例)從這個故事中我們可以得到什么啟示?得出結(jié)論:實踐是認識的歸宿和目的。啟發(fā)學生學以致用,eg:紀中的學生研究地溝油簡易檢測方法(靈活利用身邊的教學資源)。【板書設計】實踐是認識的基礎(板書)投影:逐步展示本課知識結(jié)構(gòu)圖。學生通過回憶,讓學生有直觀的認識,學習內(nèi)容一目了然。1.實踐是認識的來源。2.實踐是認識發(fā)展的動力。3.實踐是檢驗認識的真理性的唯一標準。

上一頁123...404142434445464748495051下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!