2、通過動手操作,發(fā)展幼兒空間想象能力和創(chuàng)造能力。3、培養(yǎng)幼兒對數(shù)學活動的興趣?;顒訙蕚洌?、知識按的準備:幼兒已經(jīng)認識幾中圖形。2、物質(zhì)資料準備:奇妙箱,幼兒操作用的六種幾何圖形若干;各種圖形卡片人手一份?;顒恿鞒炭傆^:奇妙箱里找圖形說特征——拼畫——數(shù)數(shù)、分類——延伸:讓幼兒自己尋找其他圖形活動過程:(一)游戲:“奇妙箱”里找圖形娃娃師:“今天,老師帶來了一只奇妙的箱子?!保ǔ鍪酒婷钕洌澳銈兿氩幌胫览锩娌亓耸裁疵孛馨??”1、老師念兒歌:奇妙口袋東西多,讓我先來摸一摸,摸出來看是什么?拿出長方形,問:“這是什么啊?為什么說她是長方形的?。俊眴枺骸叭粘I钪?,我們見過哪些東西是長方形的?”(引導幼兒討論)2、再念兒歌:奇妙口袋東西多,請某某小朋友來摸一摸。當幼兒摸出圖形后,要求說出圖形名稱和特征,并講出生活中還有哪些這樣的物品?……游戲反復進行。
2、認識圓形、正方形、三角形圖形標記,并學習按照圖形標記制作相應的形狀?! ?、能注意操作過程中的書面整潔,樂意邊操作邊講述。 活動準備: 1、圓形、三角形、正方形餅干(均未拆封)若干。 2、三只毛絨小動物,每個小動物胸口有一個形狀標記?! ?、圓形、三角形、正方形大圖片?! ?、幼兒用書(P10—11)人手一冊 5、圓形、三角形、正方形的印章(或小圖片),顏料等若干?! 』顒舆^程: 一、觀察餅干的形狀,了解形狀的主要特征。1、出示餅干,請幼兒說說:這是什么?它有哪些形狀?你喜歡吃什么形狀的餅干? 2、教師(出示圓形、三角形、正方形):圓形(三角形、正方形)是什么樣子的? 3、教師折疊圖形,引導幼兒直觀感受圖形的特征呢感,使幼兒知道:圓形是圓圓的,沒有尖尖的角;正方形有四個一樣大的角,一樣長的邊;三角形有三個角,三條邊。
解析:根據(jù)“全等三角形的對應角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結:本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關系聯(lián)系起來.三、板書設計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應角、對應線段相等.首先展示全等形的圖片,激發(fā)學生興趣,從圖中總結全等形和全等三角形的概念.最后總結全等三角形的性質(zhì),通過練習來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實例熟悉運用全等三角形的性質(zhì)解決一些簡單的實際問題
《剛要》中明確指出:“讓幼兒能從生活和游戲中感受事物的數(shù)量關系并體驗到數(shù)學的重要和樂趣”。根據(jù)這一要求,利用測量活動將幼兒生活中的內(nèi)容數(shù)量化,不僅能夠使幼兒輕松積累測量的經(jīng)驗,而且能從中體驗到測量的樂趣。那么,為了激發(fā)幼兒測量的興趣,讓幼兒了解測量的知識,積累測量經(jīng)驗,學會做簡單的測量記錄。因此,本次活動我設計為一個探究性的學習活動,從測量孩子的圖形(正方形)開始,利用孩子常見的“回形針”為自然物,在活動中放手讓幼兒大膽進行嘗試,將幼兒的被動學習變?yōu)橹鲃訉W習。在動手操作中不僅獲得知識經(jīng)驗,而且還獲得了學習知識的方法和能力的提高。 活動目標: 1、學習用自然物測量圖形的邊長,探索并初步掌握正確的測量方法。 2、會用圓圈、短線簡單的圖形記錄測量結果?! ?3、能積極愉快的參與活動,體驗測量的樂趣?! 』顒訙蕚洌?教具:大小不同的正方形、各種圖示、照相機?! ?學具:每人一個正方形、彩色回形針若干、水彩筆。
1.制作紅燈籠師:(展示漂亮的燈籠)小朋友們想不想自己親手制作一個呢?生:好呀師:那小朋友們知道制作燈籠需要什么材料嗎?生:彩紙、剪刀...師:沒錯,那老師先來展示一下怎么制作燈籠吧!(展示完后,開始讓小朋友兩兩組合共同制作)2.制作燈籠剪紙師:小朋友們,剛剛是不是已經(jīng)制作燈籠了呀?下面我們進行一個更好玩的環(huán)節(jié)?生:好呀好呀!師:那我先來展示一下咯,小朋友們別眨眼呀?。ㄕ故就旰?,開始讓小朋友們獨立完成)小結:通過制作共同合作制作燈籠與獨自完成燈籠剪影,不僅使他們更能感知燈籠的形狀,更能提高小朋友們的動手能力和思考力。
文本分析《琵琶行》作為白居易最為出名的詩歌之一,內(nèi)容詳實,情感動人,在詩歌中,白居易塑造了兩個形象極為鮮明的人物——琵琶女&作者本人。一個是江湖薄命人,一個是官場失意者。兩個本無交集的人因為京都琵琶聲相遇,互訴衷腸后,發(fā)出“同是天涯淪落人,相逢何必曾相識“的感慨
第二種分法:分成三類:直角是一類,比直角小的分為一類,比直角的的又分為一類。2.討論交流,引導學生明確銳角和鈍角的意義。教師:比直角小的就是直角的弟弟,比直角的的就是它的哥哥。我們來為它們起個名字好嗎?讓學生充分交流后引導小結:比直角小的叫銳角,比直角大的叫鈍角。相互討論:怎樣判斷一個角是不是銳角或鈍角?學生討論(得出和直角比、用眼睛看等方法)三、實踐應用,鞏固提高1.完成練習九的第1、2題。2.畫一畫:請你分別畫出一個直角、銳角和鈍角。四、游戲活動1.折一折,比一比。讓學生利用身邊的材料折出不同的角,并互相認一認是什么角?2.摸摸、猜猜。(分小組活動)活動規(guī)則:把一同學眼睛蒙住,另一同學用活動角掰成大小不同的角,讓蒙住眼睛的同學通過手摸后說出是什么角?其他同學當裁判。然后組內(nèi)同學交換活動。五、全課總結這節(jié)課我們學習了什么?你有哪些收獲?六、布置作業(yè)
2.能力目標:在活動中培養(yǎng)學生從具體到抽象,再從抽象回到具體的思維方法。培養(yǎng)觀察、操作、表達、思維能力與探索意識,發(fā)揮學生的想像力、創(chuàng)造力,激發(fā)學生的審美觀點,培養(yǎng)學生創(chuàng)造美的能力。3.情感目標:讓學生在實際操作活動中體驗學習數(shù)學的樂趣,鼓勵他們感受美、欣賞美、創(chuàng)造美,感悟數(shù)學知識的魅力,激發(fā)學生學好數(shù)學的欲望。教學重點:認識軸對稱圖形的基本特征,dj舞曲,會找對稱軸。三、教法學法1、在教法上,為了將課堂還給學生,讓課堂散發(fā)生活活力,營造學生在教學活動中獨立自主的學習時間和空間,使他們成為課堂教學過程中的參與者和創(chuàng)造者,本著這樣的知道思想,本節(jié)課我采用了多種教學方法相結合的方式,如:情境教學法、觀察比較法、引探教學法、遷移類推法等。通過教師適時的"引"來激發(fā)學生主動的"探",通過教師恰如其分的"放"來指導學生獨立自主的"學",使師聲雙邊產(chǎn)生共鳴和諧發(fā)展!
尊敬的各位評委、各位老師,大家好,我今天說課的內(nèi)容是九年義務教育人教版小學數(shù)學一年級上冊第四單元《認識圖形》的第一課時——認識圖形。下面我將從說教材、說教法與學法、說教學過程和說板書設計這四方面來談談我對本課的教學設想。一、說教材: 1、教材分析 首先我對本教才進行簡單的分析,課程標準把空間與圖形作為義務教育階段培養(yǎng)學生初步創(chuàng)新精神和實踐能力的一個重要的學習內(nèi)容?!墩J識圖行》是本冊教材《認識圖形》的起始課,旨在認識長方體、正方體、圓柱和球這些立體圖形,認識這幾種圖形有助于發(fā)展學生的空間觀念,培養(yǎng)學生初步的觀察能力,動手操作能力和交流能力。 2、說教學目標 依據(jù)一年級學生的心理特點和的認知能力,我確定了以下教學目標: 1、知識與技能:通過觀察操作,初步認識長方體,正方體,球和圓柱體。 2、過程與方法:在觀察、操作、比較等活動過程中,培養(yǎng)學生抽象、概括、實踐、創(chuàng)新能力,建立空間觀念。
當孩子們由父母陪同時,他們才被允許進入這個運動場。3.過去分詞(短語)作狀語時的幾種特殊情況(1)過去分詞(短語)在句中作時間、條件、原因、讓步狀語時,相當于對應的時間、條件、原因及讓步狀語從句。Seen from the top of the mountain (=When it is seen from the top of the mountain), the whole town looks more beautiful.從山頂上看,整個城市看起來更美了。Given ten more minutes (=If we are given ten more minutes), we will finish the work perfectly.如果多給十分鐘,我們會完美地完成這項工作。Greatly touched by his words (=Because she was greatly touched by his words), she was full of tears.由于被他的話深深地感動,她滿眼淚花。Warned of the storm (=Though they were warned of the storm), the farmers were still working on the farm.盡管被警告了風暴的到來,但農(nóng)民們?nèi)栽谵r(nóng)場干活。(2)過去分詞(短語)在句中作伴隨、方式等狀語時,可改為句子的并列謂語或改為并列分句。The teacher came into the room, followed by two students (=and was followed by two students).后面跟著兩個學生,老師走進了房間。He spent the whole afternoon, accompanied by his mom(=and was accompanied by his mom).他由母親陪著度過了一整個下午。
教學目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設計一、實物觀察、空間想像設置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
1、數(shù)數(shù)格子,認清方向(完成想想做做第1題)設計意圖:本題在于讓學生認清平移的方向和距離,感受平移的不同方法。在教學中,讓學生自己獨立思考完成,自由發(fā)言。鼓勵學生說出不同的平移方法。2、小試牛刀(完成想想做做第2題)設計意圖:本題主要是讓學生掌握按要求畫平移后的圖形。這是本節(jié)課的難點。在教學中,先讓學生獨立畫圖,教師巡視作圖情況,對有困難的學生給予指導。在學生完成作圖后,投影部分學生的作品,交流平移的過程與方法。最后在多媒體課件上展示畫法。.3、平移的運用(“想想做做”第3題)設計意圖:本題在于使學生學會運用平移的知識畫平行線,體會平移的價值。(四)課堂小結,升華提高提問:今天你有哪些收獲?設計意圖:以問題為載體,引領學生對本節(jié)課的歸來總結。讓學生再次理解圖形的斜向平移可轉(zhuǎn)換成橫向平移和豎向平移。
說教學難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學生的年齡和認知特點,教材中“圖形的放大與縮小”從對應邊的比相等來進行安排,而對應角的不變也是形狀不變必備的條件,是學生體會圖形的相似所必需的。學生在學習的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮?。浚┧晕野选皩W生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應邊的比相等,對應角不變)”做為本節(jié)課的難點。說教法、學法:通過直觀演示,情景激趣,結合生活讓學生形成感性認識;引導學生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學習、驗證等過程形成理性認識。教學過程:(略)
一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 8.4 圓(二) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內(nèi)直線與圓的位置關系有三種(如圖8-21): (1)相離:無交點; (2)相切:僅有一個交點; (3)相交:有兩個交點. 并且知道,直線與圓的位置關系,可以由圓心到直線的距離d與半徑r的關系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質(zhì)疑 引導 分析 了解 思考 思考 帶領 學生 分析 啟發(fā) 學生思考 0 15*動腦思考 探索新知 【新知識】 設圓的標準方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關系. 講解 說明 引領 分析 思考 理解 帶領 學生 分析 30*鞏固知識 典型例題 【知識鞏固】 例6 判斷下列各直線與圓的位置關系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標準方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關系的其他方法? *例7 過點作圓的切線,試求切線方程. 分析 求切線方程的關鍵是求出切線的斜率.可以利用原點到切線的距離等于半徑的條件來確定. 解 設所求切線的斜率為,則切線方程為 , 即 . 圓的標準方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應用. 【想一想】 能否利用“切線垂直于過切點的半徑”的幾何性質(zhì)求出切線方程? 說明 強調(diào) 引領 講解 說明 引領 講解 說明 觀察 思考 主動 求解 思考 主動 求解 通過例題進一步領會 注意 觀察 學生 是否 理解 知識 點 50
教學目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。
教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現(xiàn)實和解決實際問題中的作用,進一步體會數(shù)形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當?shù)淖鴺讼担?3. 教學用具 多媒體4. 標簽