二、對數(shù)函數(shù)的概念1. 計算對數(shù)的值 N1248x 思路(引入對數(shù)的概念):讓學生依次計算、、、、、、,體會每一個真數(shù)都能找到唯一一個對數(shù)與之對應,這就形成了一個函數(shù),我們稱這個函數(shù)為對數(shù)函數(shù)。
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點的對應點.畫圖的方法大致有兩種:一是每對對應點都在位似中心的同側(cè);二是每對對應點都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設計
本板塊的活動主題是“談論節(jié)日活動”(Talk about festival activities),主要是從貼近學生日常生活的角度來切入“節(jié)日”主題。學生會聽到發(fā)生在三個國家不同節(jié)日場景下的簡短對話,對話中的人們正在參與或?qū)⒁H歷不同的慶祝活動。隨著全球化的進程加速,國際交流日益頻繁,無論是國人走出國門還是外國友人訪問中國,都已成為司空見慣的事情。因此,該板塊所選取的三個典型節(jié)日場景都是屬于跨文化交際語境,不僅每組對話中的人物來自不同的文化背景,對話者的身份和關(guān)系也不盡相同。1. Master the new words related to holiday: the lantern, Carnival, costume, dress(sb)up, march, congratulation, congratulate, riddle, ceremony, samba, make - up, after all. 2. To understand the origin of major world festivals and the activities held to celebrate them and the significance of these activities;3. Improve listening comprehension and oral expression of the topic by listening and talking about traditional festivals around the world;4. Improve my understanding of the topic by watching pictures and videos about different traditional festivals around the world;5. Review the common assimilation phenomenon in English phonetics, can distinguish the assimilated phonemes in the natural language flow, and consciously use the assimilation skill in oral expression. Importance:1. Guide students to pay attention to the attitude of the speaker in the process of listening, and identify the relationship between the characters;2. Inspire students to use topic words to describe the festival activities based on their background knowledge. Difficulties:In the process of listening to the correct understanding of the speaker's attitude, accurately identify the relationship between the characters.
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
一.學生情況分析對于三角形的內(nèi)角和定理,學生在小學階段已通過量、折、拼的方法進行了合情推理并得出了相關(guān)的推論。在小學認識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學生升入初中階段學習過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明。現(xiàn)在的學生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學生已具備良好的學習習慣,有一定分析、歸納能力。
一、關(guān)于教學目標的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應用。探索不等式的基本性質(zhì)是在為本章的重點一元一次不等式的解法作準備。不等式的基本性質(zhì)3更是本章的難點。可是說不等式的基本性質(zhì)這個概念既是不等式這一章的基礎概念又是學生學習的難點。因此我選擇此節(jié)課說課。教參指導我們:教學要注重和學生已有的學習經(jīng)驗和生活實際相聯(lián)系,注重讓學生經(jīng)歷和體會“從實際問題中抽象出數(shù)學模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學。使學生在熟悉的實際問題中,在已有的學習經(jīng)驗的基礎上,經(jīng)歷“嘗試—猜想—驗證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學的價值,激發(fā)學習興趣。在教學中要滲透函數(shù)思想。運用數(shù)學中歸納、類比的方法,理解方程與不等式的異同點。
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學習不等式的基本性質(zhì),在學習過程中,可與等式的基本性質(zhì)進行類比,在運用性質(zhì)進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質(zhì)疑,通過練習中易出現(xiàn)的錯誤,引導學生歸納總結(jié),提升學生的自主探究能力.
教學目標1、知識目標:掌握等式的性質(zhì);會運用等式的性質(zhì)解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數(shù)學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數(shù)學學習活動的意識和情感,敢于面對數(shù)學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質(zhì)。難點:應用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學時數(shù) 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)
方法總結(jié):在等腰三角形有關(guān)計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉(zhuǎn)中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應點到旋轉(zhuǎn)中心的距離相等,任意一組對應點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應線段相等,對應角相等.
1. Ss look at the picture and scan the passage to understand the main idea while teacher is giving the following questions to inspire Ss to think.*Where are those people?*What are they doing?*Why are they so excited?2. Ss complete the passage with the appropriate -ing form. Then discuss and check the answers with class.Answers: boring, interesting, taking, exciting, amazing3. The teacher raises questions for the students to discuss and encourages them to express their opinions.*Do you like La Tomatina? Why or why not?4. Each group representative reports the discussion result, the teacher gives feedback and the evaluation.Step 6 PracticeActivity 41. Ss complete the Ex 2 in Using structures.2. Check the answers after finishing the exercises.①The dragon boat races are the most exciting part of the Dragon Boat Festival.② The children were excited to go Easter egg hunting.③What an amazing performance! This is the best music festival I have ever been to.④We were amazed by her funny-looking hat.⑤His inspiring speech at the conference won the admiration/ favour of the audience.⑥This is a challenging game to test your memory and observation capabilities. 3. T asks Ss to finish Ex 3 and 4 in Using structures by themselves, then check the answers with class.Step 6 Homework1. Understand and master the functions and usage of the -ing form;2. Finish the other exercises in Using structures.1、通過本節(jié)內(nèi)容學習,學生是否理解和掌握動詞-ing形式作定語和表語的功能和意義;2、通過本節(jié)內(nèi)容學習,學生能否在理解文段內(nèi)容的基礎上,根據(jù)上下文語境和表達邏輯,能正確運用動詞-ing形式描述節(jié)日慶典。3、通過本節(jié)內(nèi)容學習,學生是否歸納和積累用于表達情緒的相關(guān)詞匯。
*wide range of origins(= a great number of different origins, many kinds of origins)*It featured a parade and a great feast with music, dancing, and sports. (=A parade and a great feast with music, dancing, and sports were included as important parts of the Egyptian harvest festival.)*.. some traditions may fade away and others may be established.(= Some traditions may disappear gradually, while other new traditions may come into being.)Step 6 Practice(1) Listen and follow the tape.The teacher may remind the students to pay attention to the meaning and usage of the black words in the context, so as to prepare for the completion of the blanks in activity 5 and vocabulary exercises in the exercise book.(2) Students complete the text of activity 5 by themselves.The teacher needs to remind the students to fill in the blanks with the correct form of the vocabulary they have learned in the text.Students exchange their answers with their partners, and then teachers and students check their answers.(3)Finish the Ex in Activity 5 of students’ book.Step 7 Homework1. Read the text again, in-depth understanding of the text;2. Discuss the origin of festivals, the historical changes of related customs, the influence of commercial society on festivals and the connotation and essential meaning of festivals.3. Complete relevant exercises in the guide plan.1、通過本節(jié)內(nèi)容學習,學生是否理解和掌握閱讀文本中的新詞匯的意義與用法;2、通過本節(jié)內(nèi)容學習,學生能否結(jié)合文本特點快速而準確地找到主題句;3、通過本節(jié)內(nèi)容學習,學生能否理清論說文的語篇結(jié)構(gòu)和文本邏輯,了解節(jié)日風俗發(fā)展與變遷,感悟節(jié)日的內(nèi)涵與意義。
Activity 81.Grasp the main idea of the listening.Listen to the tape and answer the following questions:Who are the two speakers in the listening? What is their relationship?What is the main idea of the first part of the listening? How about the second part?2.Complete the passage.Ask the students to quickly review the summaries of the two listening materials in activity 2. Then play the recording for the second time.Ask them to complete the passage and fill in the blanks.3.Play the recording again and ask the students to use the structure diagram to comb the information structure in the listening.(While listening, take notes. Capture key information quickly and accurately.)Step 8 Talking Activity 91.Focus on the listening text.Listen to the students and listen to the tape. Let them understand the attitudes of Wu Yue and Justin in the conversation.How does Wu Yue feel about Chinese minority cultures?What does Justin think of the Miao and Dong cultures?How do you know that?2.learn functional items that express concerns.Ask students to focus on the expressions listed in activity. 3.And try to analyze the meaning they convey, including praise (Super!).Agree (Exactly!)"(You're kidding.!)Tell me more about it. Tell me more about it.For example, "Yeah Sure." "Definitely!" "Certainly!" "No kidding!" "No wonder!" and so on.4.Ask the students to have conversations in small groups, acting as Jsim and his friends.Justin shares his travels in Guizhou with friends and his thoughts;Justin's friends should give appropriate feedback, express their interest in relevant information, and ask for information when necessary.In order to enrich the dialogue, teachers can expand and supplement the introduction of Miao, dong, Lusheng and Dong Dage.After the group practice, the teacher can choose several groups of students to show, and let the rest of the students listen carefully, after listening to the best performance of the group, and give at least two reasons.
(2) students are divided into groups according to the requirements of activity 3. Each student shares a story of personal experience or hearing-witnessing kindness, and then selects the most touching story in the group and shares it with the whole class. Before the students share the story, the teacher can instruct them to use the words and sentence patterns in the box to express. For example, the words in the box can be classified:Time order: first of all, then, after that, later, finally logical relationship :so, however, although, butTeachers can also appropriately add some transitional language to enrich students' expression:Afterwards, afterwards, at last, in the end, eventuallySpatial order: next to, far from, on the left, in front ofOtherwise, nevertheless, as a result, therefore, furthermore, in addition, as well asSummary: in a word, in short, on the whole, to sum up, in briefStep 8 Homework1. Understand the definition of "moral dilemma" and establish a correct moral view;2. Accumulate vocabulary about attitudes and emotions in listening texts and use them to express your own views;3. Complete relevant exercises in the guide plan.1、通過本節(jié)內(nèi)容學習,學生能否理解理解“道德困境”的定義;2、通過本節(jié)內(nèi)容學習,學生能否通過說話人所表達的內(nèi)容、說話的語氣、語調(diào)等來判斷其態(tài)度和情緒;3、通過本節(jié)內(nèi)容學習,學生能否針對具體的道德困境發(fā)表自己的看法和見解,能否掌握聽力理訓練中的聽力策略。
(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學生自己完成)三、課堂練習 活動3 教材習題小結(jié):談談你這節(jié)課學習的收獲.
(六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據(jù),進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應指向?qū)W生的應用,建構(gòu)富有符合時代氣息的內(nèi)容,與生活經(jīng)驗更加貼合,對學生的語言建構(gòu)與運用有所提升,在情境中能夠有效地進行交流。3.任務化以任務為導向的序列化學習,可以為學生構(gòu)建學習路線圖、學習框架等具體任務引導;或以跨媒介的認識與應用為任務的設置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實現(xiàn)對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內(nèi)容服務。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內(nèi)容立體化和具體化的感悟,提升學生的審美能力。
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):