(三)聯(lián)系生活玩中強(qiáng)化活動(dòng)二:制作方向板這樣不僅可以區(qū)分方向板上的8個(gè)方向和生活中的8個(gè)方向,而且對(duì)于四個(gè)新方向一目了然。再利用它做一些實(shí)踐活動(dòng)的練習(xí),從而體會(huì)到方向和位置一樣,都是相對(duì)的。要找好中心點(diǎn)才能確定方向。進(jìn)而考察學(xué)生對(duì)知識(shí)的理解能力和反應(yīng)能力?;顒?dòng)三:把你的方向板和教室的方向保持一致,同桌或小組間進(jìn)行你問我答的游戲活動(dòng)。(四)聯(lián)系生活拓展應(yīng)用出示中國地圖,先來找找首都北京在哪里?我們的家鄉(xiāng)大致在北京的()方向,實(shí)際是以北京為中心,我們可以在那畫一個(gè)方向標(biāo),從而使問題一目了然。再找吉林、遼寧、四川分別在北京的()方向。(五)師生整理體驗(yàn)收獲在這一環(huán)節(jié)中,主要讓學(xué)生談兩點(diǎn):1.談收獲,讓學(xué)生說一說這節(jié)課學(xué)會(huì)了什么。
3、情感目標(biāo):通過長方形和正方形周長計(jì)算公式的推導(dǎo)過程,培養(yǎng)學(xué)生的探索精神和合作精神。三、說教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵點(diǎn)。本著課程標(biāo)準(zhǔn),我在認(rèn)識(shí)了本節(jié)課教材在整個(gè)知識(shí)結(jié)構(gòu)中所處的地位,考慮學(xué)生認(rèn)知情況的基礎(chǔ)上,我確立了如下教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵點(diǎn)。教學(xué)重點(diǎn):推導(dǎo)、歸納長方形和正方形周長的計(jì)算公式。教學(xué)難點(diǎn):理解并掌握長方形、正方形周長的計(jì)算方法。教學(xué)關(guān)鍵點(diǎn):讓學(xué)生在自己的計(jì)算和解決問題的過程中體會(huì)和理解算法。四、說教法。依據(jù)學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)方法中力求體現(xiàn)以下幾個(gè)方面的理念:從學(xué)生愛聽的故事出發(fā),為學(xué)生創(chuàng)設(shè)探究學(xué)習(xí)的情景;聯(lián)系生活實(shí)際,讓學(xué)生體會(huì)數(shù)學(xué)與生活的聯(lián)系;改變學(xué)生的學(xué)習(xí)方式,運(yùn)用合作學(xué)習(xí),培養(yǎng)學(xué)生的協(xié)作能力;主要采用:創(chuàng)設(shè)情境引入新課、師生互動(dòng)探討新知、引導(dǎo)學(xué)生總結(jié)、點(diǎn)撥學(xué)生迷惑等教學(xué)方法。
五、說教學(xué)過程為了高效地實(shí)現(xiàn)教學(xué)目標(biāo),整個(gè)教學(xué)過程分為如下幾個(gè)環(huán)節(jié)進(jìn)行:環(huán)節(jié)一:創(chuàng)設(shè)情景,導(dǎo)入新課在新課開始時(shí),用多媒體課件以PPT的形式展示幾幅含有長方體和正方體的圖片。即建筑物,道路和家具。讓學(xué)生通過觀察圖片找出其中的長方體。然后,讓學(xué)生聯(lián)系到生活中的物體,找出2到3個(gè)長方體的實(shí)物。并在這些實(shí)物的基礎(chǔ)上呈現(xiàn)長方體的幾何圖形。也由此導(dǎo)入新課——長方體的認(rèn)識(shí),板書課題,長方體的認(rèn)識(shí)。環(huán)節(jié)二:合作學(xué)習(xí),探究新知。在這個(gè)環(huán)節(jié)中,我設(shè)計(jì)了這樣幾個(gè)活動(dòng),來落實(shí)教學(xué)目標(biāo)?;顒?dòng)一,“數(shù)一數(shù)”。把學(xué)生分成幾個(gè)小組,讓他們觀察手中的長方體紙盒,請(qǐng)他們找出長方體有幾個(gè)面,再找出面與面之間的線,由此導(dǎo)入棱的概念,通過觀察,他們發(fā)現(xiàn)每三條棱相交于一點(diǎn)。由此導(dǎo)入頂點(diǎn)的概念,再找出有幾個(gè)頂點(diǎn)。并在設(shè)計(jì)的表格中板書。
三、說學(xué)法有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不是單純地依賴模仿與記憶,而是一個(gè)有目的的、主動(dòng)建構(gòu)知識(shí)的過程。為此,我十分重視學(xué)生學(xué)習(xí)方法的指導(dǎo),在本節(jié)課中,我指導(dǎo)學(xué)生學(xué)習(xí)的方法為:觀察發(fā)現(xiàn)法、動(dòng)手操作法、自主探究法、合作交流法,讓他們?cè)谡f一說、擺一擺、填一填、做一做、想一想等一系列活動(dòng)中探索長方體體積的計(jì)算方法。我力求以"長方體、正方體體積"這一數(shù)學(xué)知識(shí)為載體,通過學(xué)生主動(dòng)參與、自主探究、發(fā)現(xiàn)結(jié)論的過程,使學(xué)生的數(shù)學(xué)認(rèn)知結(jié)構(gòu)建立在自己的實(shí)踐經(jīng)驗(yàn)和主動(dòng)建構(gòu)之上。四、說教學(xué)流程教學(xué)時(shí).我安排了情景引入.揭示課題,自主探究.推導(dǎo)公式,利用關(guān)系.類推公式,鞏固練習(xí).運(yùn)用公式,全課總結(jié).交流評(píng)價(jià)五個(gè)環(huán)節(jié).(一)激情引趣.揭示課題.首先,通過比較生活中一些物體的大小,復(fù)習(xí)體積概念。
1.估計(jì)一下教室地面的大小,并說說你是怎樣估計(jì)的?如果知道教室的長為8米,寬為6米,請(qǐng)問它的面積是多少?如果要在教室的天花板一周圍上裝飾線條,需要多少米線條?2.小剛房間的一面墻壁長6米,寬3米,墻上有一扇窗面積是3平方米,現(xiàn)在要粉刷這面墻壁,要粉刷的面積是多少?3.一輛灑水車每分行駛60米,灑水的寬度是8米,灑水車直行9分,被灑水的地面是多少平方米?4.一張長方形的紙,長9厘米,寬4厘米,剪下一個(gè)最大的正方形后,剩下紙片的面積是多少平方厘米?5.小明用36厘米長的鐵絲圍成一個(gè)正方形,這個(gè)正方形的面積是多少平方厘米?6.有兩個(gè)大小一樣的長方形,長18厘米,寬9厘米,拼成一個(gè)正方形,它的周長是多少?拼成一個(gè)長方形,它的周長是多少?拼成的兩個(gè)圖形面積有什么關(guān)系?是多少?
二、探究交流,引導(dǎo)概括 —— 方程為了培養(yǎng)學(xué)生的發(fā)現(xiàn)和抽象概括能力,同時(shí)進(jìn)一步理解方程的意義,我讓學(xué)生分組學(xué)習(xí),引導(dǎo)他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學(xué)生的主體性,培養(yǎng)學(xué)生的合作意識(shí),同時(shí)讓學(xué)生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習(xí)1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對(duì)嗎?4、叫學(xué)生用圖來表示等式和方程的關(guān)系。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。只是在學(xué)生需要時(shí)給予恰當(dāng)?shù)膸椭?。”通過不同形式的習(xí)題幫助學(xué)生掌握新知。進(jìn)一步突出本節(jié)課的重難點(diǎn)。尤其是創(chuàng)新題,1、編兩個(gè)不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數(shù),使等式成立。具有一定的挑戰(zhàn)性.只有當(dāng)自己的觀點(diǎn)與集體不一致時(shí),才會(huì)產(chǎn)生要證實(shí)自己思想的欲望,從而激活學(xué)生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學(xué)生,而是要激勵(lì)學(xué)生在學(xué)習(xí)的過程中不斷地去獲得成功的體驗(yàn).學(xué)生是學(xué)習(xí)的主體,只有通過學(xué)生自身的”再創(chuàng)造”活動(dòng),才能納入其認(rèn)知結(jié)構(gòu)中,才可能成為有效的知識(shí). 在教與學(xué)的活動(dòng)中,有老師的組織、參與和指導(dǎo),有同伴的合作、交流與探索。 “授之以魚,不如授之以漁?!彪m只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學(xué)生的新知建構(gòu)拓展出更大的空間!
這節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教科書數(shù)學(xué)第九冊(cè),P117——P119頁復(fù)習(xí)、例1、例2、解方程的一般步驟、想一想、做一做及P120頁T1-4。教學(xué)目的有以下三點(diǎn):1、使學(xué)生掌握列方程解兩步應(yīng)用題的方法。2、總結(jié)列方程解應(yīng)用題的一般步驟。3、培養(yǎng)學(xué)生分析數(shù)量關(guān)系的能力,提高學(xué)生在列方程解應(yīng)用題時(shí)分析等理關(guān)系的能力。教學(xué)重點(diǎn):分析應(yīng)用題里的等量關(guān)系,會(huì)列方程解應(yīng)用題。教學(xué)難點(diǎn):分析應(yīng)用題里的等量關(guān)系。教具準(zhǔn)備:小黑板、寫好題目的紙條等。這節(jié)課在學(xué)生已有的解方程、分析應(yīng)用題數(shù)量關(guān)系等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué),使學(xué)生掌握列方程解應(yīng)用題的方法,為以后學(xué)習(xí)更深入的知識(shí)打下基礎(chǔ),同時(shí)培養(yǎng)學(xué)生積極思考問題,熱愛自然科學(xué)的品質(zhì)。
一、說教材:稍復(fù)雜的方程的教學(xué)任務(wù)例1教學(xué)解方程ax±b=c及其應(yīng)用(列方程解形如ax±b=c的問題)(1)把解方程和用方程解決問題有機(jī)結(jié)合,在解決問題的過程中解較復(fù)雜的方程。(2)結(jié)合現(xiàn)實(shí)素材(足球上兩種顏色皮的塊數(shù))引出,這種問題用算術(shù)方法解決思考起來比較麻煩。(3解方程的過程其實(shí)是由解若干基本方程構(gòu)成的(y-20=4,2x=24),需要強(qiáng)調(diào)把2x看成一個(gè)整體。(4)可以列出不同的方程,如2x-4=20,關(guān)鍵是使學(xué)生理解數(shù)量關(guān)系。二、說學(xué)生:學(xué)生在前面已經(jīng)學(xué)習(xí)了簡單的方程數(shù)量關(guān)系,及簡單方程式的解法,而且我在前面的教學(xué)中已經(jīng)笨鳥先飛,讓學(xué)生接觸了形如:ax±b=c的方程式。三、說教法:根據(jù)學(xué)生的實(shí)際情況,我準(zhǔn)備在教學(xué)過程中,重點(diǎn)講解稍復(fù)雜方程式的數(shù)量關(guān)系式的分析研究,讓學(xué)生根據(jù)應(yīng)用題的題意列出正確的數(shù)量關(guān)系式。
4、認(rèn)識(shí)長方體的立體圖。師:(出示課件長方體)你最多能看到這個(gè)長方體的幾個(gè)面?你看到了哪三個(gè)面?哪三個(gè)面看不到?(上面、前面、右面)師:我們把所看到的這個(gè)長方體根據(jù)透視原理畫下來就是這樣的。(媒體演示) 這就是長方體的立體圖形。師:大家會(huì)認(rèn)了嗎?試一試。師小結(jié):以后,我們要判斷一個(gè)物體是不是長方體,要根據(jù)長方體的特征去分析。5、畫長方體師:同學(xué)們都學(xué)得非常認(rèn)真知道了長方體的特征,那么大家會(huì)畫長方體嗎?畫長方體步驟:1、畫一個(gè)平行四邊形。2、畫出長方體的高。3、連線。6、 教學(xué)長方體的長、寬、高。 (1)、師:同學(xué)們剛畫出了長方體,那么長方體的長、寬、高有什么特點(diǎn)?師課件展示后,學(xué)生匯報(bào)。(2)、大家想不想親手制作一個(gè)長方體的框架呢?把你思考的結(jié)果和大家分享分享。生匯報(bào)。
蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時(shí)候到了,我將死,你們活下來,是誰的選擇好,只有天知道。”說畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對(duì)一個(gè)叫克力同的人說了這樣一番話??肆ν腋嬖V你,這幾天一直有一個(gè)神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正?!聦?shí)上你就要離開這里了。當(dāng)你去死的時(shí)候,你是個(gè)犧牲品,但不是我們所犯錯(cuò)誤的犧牲品,而是你同胞所犯錯(cuò)誤的犧牲品。但你若用這種可恥的方法逃避,以錯(cuò)還錯(cuò),以惡報(bào)惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應(yīng)該傷害的,包括你自己、你的朋友、你的國家,還有我們。到那時(shí),你活著面對(duì)我們的憤怒,你死后我們的兄弟、冥府里的法律也不會(huì)熱情歡迎你;因?yàn)樗鼈冎滥阍噲D盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧?!?/p>
4、課堂討論:社會(huì)主義的根本原則是共同富裕,這也是正確處理分配關(guān)系的目標(biāo)。而十五大報(bào)告卻進(jìn)一步明確指出“允許和鼓勵(lì)一部分人通過誠實(shí)勞動(dòng)和合法經(jīng)營先富起來,允許和鼓勵(lì)資本、技術(shù)等生產(chǎn)要素參與收益分配”。這矛盾嗎?為什么?以小組方式進(jìn)行討論,再以代表的形式發(fā)表意見,這樣既調(diào)動(dòng)了學(xué)生的積極性,也使學(xué)生對(duì)內(nèi)容有了更深層次的了解。最后老師加以總結(jié),用“蛋糕效應(yīng)”來闡述“效率優(yōu)先,兼顧公平”的關(guān)系,既形象又貼切,加深學(xué)生的理解。本課時(shí)內(nèi)容比較抽象,學(xué)生對(duì)于概念的理解有較大的難度。因此在教學(xué)中我采用多媒體課件教學(xué),聯(lián)系生活實(shí)際,讓學(xué)生在生活中去體會(huì)貨幣的職責(zé),區(qū)分貨幣的職能,以便達(dá)到學(xué)以致用的目的。同時(shí)適時(shí)設(shè)置疑問,讓學(xué)生與我共同思考,真正實(shí)現(xiàn)“師生互動(dòng),生生互動(dòng)”,調(diào)動(dòng)學(xué)生積極,主動(dòng)的參與到教學(xué)實(shí)踐活動(dòng)中。(三)課堂小結(jié),強(qiáng)化認(rèn)識(shí)。(2—3分鐘)通過歸納小結(jié),既強(qiáng)調(diào)了重點(diǎn),又鞏固了本節(jié)知識(shí),幫助學(xué)生形成知識(shí)網(wǎng)絡(luò),便于課后理解記憶。
教師點(diǎn)撥:是社會(huì)主義意識(shí)形態(tài)的本質(zhì)體現(xiàn),是全國人民團(tuán)結(jié)奮斗的共同思想基礎(chǔ)。④建設(shè)社會(huì)主義核心價(jià)值體系的要求設(shè)置探究問題:建設(shè)社會(huì)主義核心價(jià)值體系的要求有哪些?學(xué)生自主學(xué)習(xí)教材,得出結(jié)論板書:3建設(shè)社會(huì)主義核心價(jià)值體系的要求設(shè)計(jì)意圖:在掌握了內(nèi)容的基礎(chǔ)上,這一部分知識(shí)的學(xué)習(xí)水到渠成。高舉旗幟科學(xué)發(fā)展板書:1、中共引領(lǐng)文化前進(jìn)方向的旗幟是——中國特色社會(huì)主義設(shè)置探究問題:高舉中國特色社會(huì)主義偉大旗幟最根本的要求是什么?學(xué)生自主學(xué)習(xí),回答問題板書:2高舉中國特色社會(huì)主義偉大旗幟,最根本的是堅(jiān)持中國特色社會(huì)主義理論體系。教師繼續(xù)追問:這一理論體系的基本內(nèi)涵是什么?能否舉例說明這一理論體系有什么特點(diǎn)。學(xué)生討論,教師點(diǎn)撥:這個(gè)理論體系,堅(jiān)持和發(fā)展了馬克思列寧主義、毛澤東思想,是馬克思主義中國化最新成果。中國特色社會(huì)主義理論體系具有強(qiáng)大的生命力、創(chuàng)造力、感召力,是不斷豐富和發(fā)展的馬克思主義
四、說教學(xué)過程:首先,導(dǎo)入學(xué)習(xí)。開門見山式導(dǎo)入人類的地域活動(dòng)聯(lián)系,并設(shè)計(jì)提問在日常生活中,我們常用到的現(xiàn)代交通運(yùn)輸方式有哪些?引出第一部分內(nèi)容“主要交通運(yùn)輸方式”的講解。通過導(dǎo)入,讓學(xué)生明確交通運(yùn)輸?shù)闹匾裕瑢?duì)交通運(yùn)輸工具和方式有感性的認(rèn)識(shí),以便于下面教學(xué)內(nèi)容的進(jìn)行。其次,進(jìn)入新課講授。由于學(xué)生們對(duì)五種交通運(yùn)輸方式已經(jīng)有感性的認(rèn)識(shí),因此在交通運(yùn)輸方式的優(yōu)缺點(diǎn)方面的講解上,可以充分發(fā)揮學(xué)生的主觀能動(dòng)性,通過自己閱讀課本的圖來學(xué)習(xí)五種主要交通運(yùn)輸方式的優(yōu)缺點(diǎn),以此培養(yǎng)學(xué)生的閱讀能力和自主學(xué)習(xí)能力。對(duì)于交通運(yùn)輸方式的掌握,僅僅知道其優(yōu)缺點(diǎn)還是遠(yuǎn)遠(yuǎn)不夠的,要在此基礎(chǔ)上通過提問引導(dǎo)出影響交通運(yùn)輸方式選擇的因素,并通過實(shí)例與學(xué)生共同分析,選擇出合適的交通運(yùn)輸方式,得出要綜合考慮,本著“多、快、好、省”的原則,根據(jù)運(yùn)輸對(duì)象的特點(diǎn)和運(yùn)輸要求,選擇最佳運(yùn)輸方式的結(jié)論。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點(diǎn)與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點(diǎn)概念,進(jìn)一步理解零點(diǎn)判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念;2、理 解函數(shù)零點(diǎn)與方程的根以及函數(shù)圖象與x軸交點(diǎn)的關(guān)系,掌握零點(diǎn)存在性定理的運(yùn)用;3、在認(rèn)識(shí)函數(shù)零點(diǎn)的過程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;b.邏輯推理:零點(diǎn)判定定理;c.數(shù)學(xué)運(yùn)算:運(yùn)用零點(diǎn)判定定理確定零點(diǎn)范圍;d.直觀想象:運(yùn)用圖形判定零點(diǎn);e.數(shù)學(xué)建模:運(yùn)用函數(shù)的觀點(diǎn)方程的根;
本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點(diǎn)、方程的根與圖象交點(diǎn)三者之間的聯(lián)系.2.會(huì)借助零點(diǎn)存在性定理判斷函數(shù)的零點(diǎn)所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點(diǎn)個(gè)數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;2.邏輯推理:借助圖像判斷零點(diǎn)個(gè)數(shù);3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)或零點(diǎn)所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點(diǎn)概念.重點(diǎn):零點(diǎn)的概念,及零點(diǎn)與方程根的聯(lián)系;難點(diǎn):零點(diǎn)的概念的形成.
本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識(shí).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊(cè)書中的重點(diǎn)內(nèi)容,又是對(duì)函數(shù)知識(shí)的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);