2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗(yàn)。 活動(dòng)準(zhǔn)備:1.剪好花邊的鉛畫(huà)紙2.記號(hào)筆、油畫(huà)棒。(人手一份) 3.集郵冊(cè)3本?;顒?dòng)重點(diǎn): 幼兒學(xué)會(huì)用鮮明、柔和的色彩裝飾郵票?;顒?dòng)流程:欣賞郵票--師生討論--幼兒作畫(huà)--評(píng)價(jià)活動(dòng)
2.增進(jìn)幼兒裝飾美和色彩美的感受和經(jīng)驗(yàn)。 活動(dòng)準(zhǔn)備:1.剪好花邊的鉛畫(huà)紙2.記號(hào)筆、油畫(huà)棒。(人手一份) 3.集郵冊(cè)3本?;顒?dòng)重點(diǎn): 幼兒學(xué)會(huì)用鮮明、柔和的色彩裝飾郵票。活動(dòng)流程:欣賞郵票--師生討論--幼兒作畫(huà)--評(píng)價(jià)活動(dòng)
(四)輪唱歌曲,表現(xiàn)黃昏。本環(huán)節(jié)設(shè)計(jì)了一個(gè)三部輪唱,主要源于三年級(jí)上冊(cè)已經(jīng)出現(xiàn)了輪唱,二部輪唱對(duì)于他們來(lái)說(shuō)基本可以,如果加入三部輪唱,歌曲的意境會(huì)表現(xiàn)的更加淋漓盡致。(五)豎笛演奏,再現(xiàn)黃昏。在本環(huán)節(jié)中通過(guò)教師吹奏豎笛,學(xué)生打擊樂(lè)伴奏,學(xué)生聆聽(tīng)豎笛演奏的《美麗的黃昏》,布置學(xué)生課后練習(xí)豎笛演奏。感受聲樂(lè)、器樂(lè)表現(xiàn)的相同與不同之處,提高學(xué)生的音樂(lè)感受力。本節(jié)課為了讓學(xué)生更好地聆聽(tīng)二拍子和三拍子的特點(diǎn),我們精心選擇了教材并自制了歌曲伴奏,通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生對(duì)四三拍有了很好的內(nèi)心體驗(yàn),并自然而然的在歌曲中表現(xiàn)出來(lái)。引導(dǎo)學(xué)生在參與音樂(lè)活動(dòng)中,學(xué)習(xí)知識(shí);提高技能;收獲成功,體驗(yàn)合唱的美妙!學(xué)生在音樂(lè)中變得更加熱情、開(kāi)朗,自信。
問(wèn)題二:上述問(wèn)題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫(huà)了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說(shuō),極差度量出的差異誤差較大。問(wèn)題三:你還能想出其他刻畫(huà)數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過(guò)這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來(lái)度量成績(jī)的波動(dòng)幅度。
可以通過(guò)下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們?cè)诔踔袑W(xué)過(guò)的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱(chēng)為四分位數(shù)。其中第25百分位數(shù)也稱(chēng)為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱(chēng)為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹(shù)人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個(gè)95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來(lái)估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識(shí)點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識(shí)點(diǎn),并能夠靈活運(yùn)用。
新知探究前面我們研究了兩類(lèi)變化率問(wèn)題:一類(lèi)是物理學(xué)中的問(wèn)題,涉及平均速度和瞬時(shí)速度;另一類(lèi)是幾何學(xué)中的問(wèn)題,涉及割線(xiàn)斜率和切線(xiàn)斜率。這兩類(lèi)問(wèn)題來(lái)自不同的學(xué)科領(lǐng)域,但在解決問(wèn)題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問(wèn)題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問(wèn)題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無(wú)限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱(chēng)y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱(chēng)為_(kāi)_________),記作f ′(x0)或________,即
新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他想要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P(pán)的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類(lèi)推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問(wèn)題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫(xiě)出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問(wèn)題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問(wèn)題.
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線(xiàn)越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線(xiàn)的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
1.對(duì)稱(chēng)性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類(lèi)比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺(jué)得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬(wàn)世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開(kāi)始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒(méi)有限制的情況下,某種細(xì)菌每20 min 就通過(guò)分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開(kāi)始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國(guó)數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測(cè)量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過(guò)杰出貢獻(xiàn). 問(wèn)題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問(wèn)題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問(wèn)題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問(wèn)題3: 你能計(jì)算1+2+3+… +n嗎?需要對(duì)項(xiàng)數(shù)的奇偶進(jìn)行分類(lèi)討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線(xiàn)性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線(xiàn)性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線(xiàn)性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線(xiàn)性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線(xiàn)性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線(xiàn)性相關(guān)程度低,但不一定不相關(guān),可能是非線(xiàn)性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線(xiàn)性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線(xiàn)性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷(xiāo)售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線(xiàn)性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷(xiāo)售額的相關(guān)程度和變化趨勢(shì)的異同.
二、典例解析例4. 用 10 000元購(gòu)買(mǎi)某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢(qián)存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢(qián)存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語(yǔ)云:“勤學(xué)如春起之苗,不見(jiàn)其增,日有所長(zhǎng)”如果對(duì)“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問(wèn)題探究1. 王芳從一歲到17歲,每年生日那天測(cè)量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號(hào)K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見(jiàn)部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬(wàn)元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說(shuō)明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問(wèn)題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過(guò)數(shù)字來(lái)反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類(lèi)似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.