設計意圖:考慮學生的個別差異,分層次布置作業(yè),讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲。五、評價分析數(shù)學課程標準指出:學生的數(shù)學學習內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,而動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式。本著這一理念,在本課的教學過程中,我嚴格遵循由感性到理性,將數(shù)學知識始終與現(xiàn)實生活中學生熟悉的實際問題相結合,不斷提高他們應用數(shù)學方法分析問題、解決問題的能力。在重視課本基礎知識的基礎上,適當進行拓展延伸,培養(yǎng)學生的創(chuàng)新意識,同時根據(jù)新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識,而且注重學生對待學習的態(tài)度是否積極。課堂中也盡量給學生更多的空間、更多展示自我的機會,讓學生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣。使學生的主體地位得到充分的體現(xiàn),使教學過程成為一個在發(fā)現(xiàn)在創(chuàng)造的認知過程。
一.關于教學內容和教學要求的認識 本節(jié)課是一節(jié)探究性活動課,教學大綱上對數(shù)學活動課作了這樣的解釋:“數(shù)學活動課指在教師的指導下,通過學生自主活動,以獲得直接經驗和培養(yǎng)實踐能力為主的課程。教育的目的在于彌補數(shù)學學科課程的不足,加強實踐環(huán)節(jié),重視數(shù)學思維的訓練,培養(yǎng)學生的學習興趣,促進學生志趣、個性、特長等自主和諧發(fā)展, 從而全面提高學生的數(shù)學素質”??梢娊虒W大綱把實習和開展探究性教學放在了重要的地位。
活動八:Story time:教學參考時間:5-7分鐘打開書,學生自己閱讀故事。兩人一小組,嘗試初步朗讀。小組間互相提問回答:一人問,另一人回答。有兩個人都不明白的問題,向全班提問。教師提問:(如果這些問題已經被同學問過了就不用再問了。)Is Zoom reading a book?Is he fishing?Are the frogs playing in the river?Are they catching mosquitoes?What are the frogs doing?教師播放故事錄音,學生跟讀。教師啟發(fā)學生說一說從故事中學到了什么。教師要適時告訴學生青蛙是人類的朋友,要愛護青蛙?;顒幽康模篠tory time的教學,是培養(yǎng)學生閱讀能力的有效載體,教師應充分利用。教師要給孩子充分的時間讓孩子能夠實實在在的進行閱讀,從閱讀中獲得信息。經過了兩年的學習,學生應該具備了初步的閱讀小故事的方法,因此教師可以引導有能力的學生在原有的基礎上,運用已經學過的語言,對故事進行簡單的復述。這樣做一方面可以檢查學生理解的程度,另一方面可以進一步培養(yǎng)、鍛煉學生的語言表達能力。
一、關于教學目標的確定:第五章的主要內容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應用。探索不等式的基本性質是在為本章的重點一元一次不等式的解法作準備。不等式的基本性質3更是本章的難點??墒钦f不等式的基本性質這個概念既是不等式這一章的基礎概念又是學生學習的難點。因此我選擇此節(jié)課說課。教參指導我們:教學要注重和學生已有的學習經驗和生活實際相聯(lián)系,注重讓學生經歷和體會“從實際問題中抽象出數(shù)學模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學。使學生在熟悉的實際問題中,在已有的學習經驗的基礎上,經歷“嘗試—猜想—驗證”的探索過程,體會“轉化”的思想方法,體會數(shù)學的價值,激發(fā)學習興趣。在教學中要滲透函數(shù)思想。運用數(shù)學中歸納、類比的方法,理解方程與不等式的異同點。
教學說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應用的例子。要解決問題(3),只需要在四邊形中構建出三角形結構,這樣就可以幫助其穩(wěn)定。設計意圖:通過學生動手操作,探究三角形穩(wěn)定性及生活中的應用,讓學生體驗數(shù)學來源于生活,服務于生活的辯證思想,感受數(shù)學美。 (五)總結反思,情意發(fā)展問題:通過這節(jié)課的學習你有什么收獲?多媒體演示:(1)知識方面:①三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應用。
設計意圖:知識的掌握需要由淺到深,由易到難.我所設計的三個例題難度依次上升,根據(jù)由簡到難的原則,先讓學生學會熟悉選用公式,再進一步到公式的變形應用,鞏固知識.特別是第三題特別強調了運用法則的前提:必需要底數(shù)相同.為加深學生對法則的理解記憶,形成“學以致用”的思想.同時為了調動學生思考,接下來讓學生進入反饋練習階段,進一步鞏固記憶.4、知識反饋,提高反思練習1(1)口答設計意圖:根據(jù)夸美紐斯的教學鞏固性原則,為了培養(yǎng)學生獨立解決問題的能力,在例題講解后,通過讓個別同學上黑板演演,其余同學在草稿本上完成練習的方式來掌握學生的學習情況,從而對講解內容作適當?shù)难a充提醒.同時,在活動中引起學生的好奇心和強烈的求知欲,在獲得經驗和策略的同時,獲得良好的情感體驗.
4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學生對性質基本熟悉后安排了四組訓練題,為避免學生應用性質的粗糙感,以小羊展開競技表演為背景,讓學生在輕松愉快的氛圍中層層遞進,不斷深入,達到強化性質,拓展性質的目的。提高學生的辨別力;進一步增強學生運用性質解決問題的能力;訓練學生的逆向思維能力,增強學生應變能力和解題靈活性.5、提煉小結完善結構(羊羊總結會)“通過本節(jié)課的學習,你在知識上有哪些收獲,你學到了哪些方法?”引導學生自主總結。設計意圖:使學生對本節(jié)課所學知識的結構有一個清晰的認識,能抓住重點進行課后復習。以及通過對學習過程的反思,掌握學習與研究的方法,學會學習,學會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)
練習3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學知識升華,提升)練習4、動動腦。(讓學生進一步感知生活中處處有數(shù)學)(四)、暢談收獲、拓展升華1、本節(jié)課你學到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結)2、布置作業(yè):習題1.9知識技能1四、說課小結本堂課我主要采用引導探索法教學,倡導學生自主學習、嘗試學習、探究學習、合作交流學習,鼓勵學生用所學的知識解決身邊的問題,注重教學效果的有效性。學生在合作學習中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學習知識,有效地拓展學生思維,成功地培養(yǎng)學生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學學習能力。但由于本人對新課標和新教材的理解不一定十分到位,所以在教材本身內在規(guī)律的把握上,會存在一定的偏差;另外,由于對學生的認知規(guī)律認識不夠,所以教學活動的設計不一定十分有效。所有這些都有待教學實踐的檢驗。
此題的設計目的:及時的練習一是起到鞏固新知識的目的,二是及時了解學生掌握新知識的情況,起到反饋的目的。這樣設計的依據(jù)是:小題多,是讓更多的學生參與到學習中來,及時給予他們更正,更多的是對他們的鼓勵和表揚,有簡單的題盡量讓基礎不太好的的學生去說,以讓他們感受到成功的樂趣;并且《新課標》中指出課程內容應處于學生“最近發(fā)展區(qū)”的范圍以內,讓成功始終伴隨學生學習的旅程,以保證學生不會因過多的失敗而放棄他們的努力,失去發(fā)展的機會。第四環(huán)節(jié):師生合作,歸納總結。先由學生個人總結,然后教師補充。設計目的:通過學生個人小結,教師可以了解學生掌握知識的情況,培養(yǎng)學生總結概括的能力,教師補充起到完善所學知識的目的。第五環(huán)節(jié):布置作業(yè),鞏固提高。設計目的:因材施“作業(yè)”,分層次布置作業(yè),減輕學生的負擔,全面推行素質教育,讓學生學有用的數(shù)學,不同的學生學習不同的數(shù)學,在數(shù)學中得到不同的發(fā)展,以求彰顯學生的個性。
探究點三:作中心對稱圖形如圖,網格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
【類型二】 根據(jù)數(shù)軸求不等式的解關于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結:本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關于a的方程是解題關鍵.三、板書設計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎.在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
通常購買同一品種的西瓜時,西瓜的質量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結:本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應用。【歸納總結】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質:①三個內角都等于60度,三條邊都相等②具有等腰三角形的一切性質。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結:用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.
教學效果:部分學生能舉一反三,較好地掌握分式方程及其應用題的有關知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應用題有一種心有余悸的感覺,其關鍵是面對應用題不知怎樣分析、怎樣找到等量關系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關系,從而學會分析問題??赡軐W生最初并不適應這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結:因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內角和等于______度;一個n邊形的內角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結:本題是線段垂直平分線的性質和角平分線的性質的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.