1、突出問題的應(yīng)用意識.教師首先用一個學(xué)生感興趣的實際問題引人課題,然后運用算術(shù)的方法給出解答。在各環(huán)節(jié)的安排上都設(shè)計成一個個的問題,使學(xué)生能圍繞問題展開思考、討論,進(jìn)行學(xué)習(xí).2、體現(xiàn)學(xué)生的主體意識.本設(shè)計中,教師始終把學(xué)生放在主體的地位:讓學(xué)生通過對列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作與交流,得出問題的不同解答方法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進(jìn)行歸納.3、體現(xiàn)學(xué)生思維的層次性.教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決間題,然后再逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程.在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學(xué)生思維的層次性.4、滲透建模的思想.把實際間題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出方程模型的能力.
學(xué)習(xí)目標(biāo):1、知識與技能(1)會用字母、運算符號表示簡單問題的規(guī)律,并能驗證所探索的規(guī)律。(2)能綜合所學(xué)知識解決實際問題和數(shù)學(xué)問題,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識,培養(yǎng)學(xué)生的實踐能力和創(chuàng)新意識。2、過程與方法(1)經(jīng)歷探索數(shù)量關(guān)系,運用符號表示規(guī)律,通過驗算驗證規(guī)律的過程。(2)在解決問題的過程中體驗歸納、分析、猜想、抽象還有類比、轉(zhuǎn)化等思維方法,發(fā)展學(xué)生抽象思維能力,培養(yǎng)學(xué)生良好的思維品質(zhì)。3、情感、態(tài)度與價值觀通過對實際問題中規(guī)律的探索,體驗“從特殊到一般、再到特殊”的辯證思想,激發(fā)學(xué)生的探究熱情和對數(shù)學(xué)的學(xué)習(xí)熱情。學(xué)習(xí)重點:探索實際問題中蘊涵的關(guān)系和規(guī)律。學(xué)習(xí)難點:用字母、運算符號表示一般規(guī)律。學(xué)習(xí)過程:一、創(chuàng)景引入活動:出示一張月歷,學(xué)生任意選出3×3方格框出的9個數(shù),并計算出這9個數(shù)的和,告訴老師,老師就可以說出你所選的是哪9個數(shù)。
(1)依照此規(guī)律,第20個圖形共有幾個五角星?(2)擺成第n個圖形需要幾個五角星?(3)擺成第2015個圖形需要幾個五角星?解析:通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個圖中,五角星有3個(3×1);第2個圖中,五角星有6個(3×2);第3個圖中,五角星有9個(3×3);第4個圖中,五角星有12個(3×4);∴第n個圖中有五角星3n個.∴第20個圖中五角星有3×20=60個.(2)擺成第n個圖形需要五角星3n個.(3)擺成第2015個圖形需要6045個五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個圖形需要3n個五角星.三、板書設(shè)計教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗教學(xué)活動的方法,同時升華學(xué)生的情感態(tài)度和價值觀.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進(jìn)行化簡。
小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.
探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).
方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.
解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的“趣”;進(jìn)一步強(qiáng)調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認(rèn)識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會,留給學(xué)生充足的動手機(jī)會和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。
解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個點的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認(rèn)識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,積極交流合作,體驗數(shù)學(xué)活動的樂趣.
設(shè)計意圖:知識的掌握需要由淺到深,由易到難.我所設(shè)計的三個例題難度依次上升,根據(jù)由簡到難的原則,先讓學(xué)生學(xué)會熟悉選用公式,再進(jìn)一步到公式的變形應(yīng)用,鞏固知識.特別是第三題特別強(qiáng)調(diào)了運用法則的前提:必需要底數(shù)相同.為加深學(xué)生對法則的理解記憶,形成“學(xué)以致用”的思想.同時為了調(diào)動學(xué)生思考,接下來讓學(xué)生進(jìn)入反饋練習(xí)階段,進(jìn)一步鞏固記憶.4、知識反饋,提高反思練習(xí)1(1)口答設(shè)計意圖:根據(jù)夸美紐斯的教學(xué)鞏固性原則,為了培養(yǎng)學(xué)生獨立解決問題的能力,在例題講解后,通過讓個別同學(xué)上黑板演演,其余同學(xué)在草稿本上完成練習(xí)的方式來掌握學(xué)生的學(xué)習(xí)情況,從而對講解內(nèi)容作適當(dāng)?shù)难a(bǔ)充提醒.同時,在活動中引起學(xué)生的好奇心和強(qiáng)烈的求知欲,在獲得經(jīng)驗和策略的同時,獲得良好的情感體驗.
4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學(xué)生對性質(zhì)基本熟悉后安排了四組訓(xùn)練題,為避免學(xué)生應(yīng)用性質(zhì)的粗糙感,以小羊展開競技表演為背景,讓學(xué)生在輕松愉快的氛圍中層層遞進(jìn),不斷深入,達(dá)到強(qiáng)化性質(zhì),拓展性質(zhì)的目的。提高學(xué)生的辨別力;進(jìn)一步增強(qiáng)學(xué)生運用性質(zhì)解決問題的能力;訓(xùn)練學(xué)生的逆向思維能力,增強(qiáng)學(xué)生應(yīng)變能力和解題靈活性.5、提煉小結(jié)完善結(jié)構(gòu)(羊羊總結(jié)會)“通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法?”引導(dǎo)學(xué)生自主總結(jié)。設(shè)計意圖:使學(xué)生對本節(jié)課所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,能抓住重點進(jìn)行課后復(fù)習(xí)。以及通過對學(xué)習(xí)過程的反思,掌握學(xué)習(xí)與研究的方法,學(xué)會學(xué)習(xí),學(xué)會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)
教學(xué)說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計意圖:通過學(xué)生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學(xué)美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學(xué)習(xí)你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應(yīng)用。
活動四:自主學(xué)習(xí),尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫???”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學(xué)習(xí)過程更加嚴(yán)謹(jǐn)。我將用下面這個課件給學(xué)生展示作圖過程。再次回顧情境,讓學(xué)生完成情境中的問題。(三)講練結(jié)合,鞏固新知第一個題目是直接運用性質(zhì)解決問題,比較簡單,面向全體學(xué)生。我還設(shè)計了第二個題目,想訓(xùn)練學(xué)生審題的能力。(四)課堂小結(jié)在學(xué)生們共同歸納總結(jié)本節(jié)課的過程中,讓學(xué)生獲得數(shù)學(xué)思考上的提高和感受成功的喜悅并進(jìn)一步系統(tǒng)地完善本節(jié)課的知識。(五)當(dāng)堂檢測為了檢測學(xué)生學(xué)習(xí)情況,我設(shè)計了當(dāng)堂檢測。第一個題目,讓學(xué)生學(xué)會轉(zhuǎn)化的思想來解決問題;第二個題目練習(xí)尺規(guī)作圖。
[設(shè)計意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學(xué)生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學(xué)生需求,更能滿足學(xué)有余力的學(xué)生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學(xué)生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學(xué)習(xí),(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學(xué)習(xí),你收獲到了什么?學(xué)生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學(xué)會了不等式的三條基本性質(zhì)2、學(xué)會了用字母來表示不等式的性質(zhì)3、學(xué)生不等式與等式的區(qū)別等等;學(xué)生在回答的時候,老師加以評價和表揚并展示主要內(nèi)容;這里教師要再次強(qiáng)調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個負(fù)數(shù)時,不等號的方向要改變,數(shù)學(xué)思想的方法是數(shù)學(xué)的靈魂,這節(jié)課我們體驗了三種數(shù)學(xué)思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學(xué)生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導(dǎo),幫助學(xué)生順利突破難點。)及時表揚答對的學(xué)生,因為這個問題整整過了三個世紀(jì),才被意大利著名的天文學(xué)家伽利略解決。后來法國數(shù)學(xué)家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),同學(xué)們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結(jié)果是有限的。(2)、每一結(jié)果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
(3)例題1的設(shè)計,一方面是幫助學(xué)生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進(jìn)一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學(xué)生分組討論的方式完。在整個活動中學(xué)生作為活動設(shè)計者、參與者.主持者;老師起到組織和指導(dǎo)的作用。為了讓學(xué)生進(jìn)一步認(rèn)識和理解隨機(jī)思想,認(rèn)識和理解概率的含義—概率是一種度量,是對隨機(jī)事件發(fā)生可能性大小的一種度量.讓學(xué)生觀察圖表,得出對稱的規(guī)律。預(yù)計學(xué)生在構(gòu)建等可能性事件模型時要花一些時間。(4)例題1的拓展設(shè)計:看學(xué)生能否能在例1的基礎(chǔ)上利用類比的思想來建構(gòu)數(shù)學(xué)模型,并得出求事件 A包含的基本事件數(shù)常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進(jìn)一步的探究前輩們是如何從不考慮順序到想到考慮順序的
一、教材分析1.教材的地位與作用本節(jié)課是在學(xué)生學(xué)習(xí)了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學(xué)習(xí)活動,引導(dǎo)學(xué)生體驗數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)良好的學(xué)習(xí)品質(zhì)。同時這節(jié)課的內(nèi)容也是下一節(jié)學(xué)習(xí)全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學(xué)目標(biāo)依據(jù)《課程標(biāo)準(zhǔn)》要求本階段的學(xué)生應(yīng)初步會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學(xué)與生活的密切聯(lián)系,增進(jìn)對數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。因此我確立本節(jié)課的教學(xué)目標(biāo)如下:知識技能目標(biāo):通過實例,使學(xué)生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學(xué)生動手操作能力、觀察能力以及合作與交流的能力