提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

圖形的全等教案教學(xué)設(shè)計(jì)

  • 九年級(jí)下冊(cè)道德與法治走向未來的少年作業(yè)設(shè)計(jì)

    九年級(jí)下冊(cè)道德與法治走向未來的少年作業(yè)設(shè)計(jì)

    2、內(nèi)容內(nèi)在邏輯本單元是九年級(jí)下冊(cè)最后一個(gè)單元,從學(xué)生個(gè)體生活、家庭生活、學(xué)校生 活、社會(huì)生活和國家、世界,最終回到青少年自身,既是前兩個(gè)單元的延續(xù), 也是對(duì)九年級(jí)乃至初中階段學(xué)習(xí)內(nèi)容的承接和提升。第五課“少年的擔(dān)當(dāng)”主要引導(dǎo)學(xué)生與時(shí)代同步,走向更廣闊的世界,在 與外部世界交往中豐富自己的經(jīng)歷、拓寬自己的視野,理解青少年具有國際 視野和情懷的重要意義,明白當(dāng)代少年的歷史責(zé)任是時(shí)代賦予的,理解青少 年全面提高個(gè)人修養(yǎng)的意義;第六課“我的畢業(yè)季”中設(shè)計(jì)了“學(xué)無止境”和“多彩的職業(yè)”,幫助學(xué) 生知道學(xué)習(xí)生活中出現(xiàn)的各種壓力,理解學(xué)習(xí)的必要性和重要性,能夠在實(shí) 踐中學(xué)習(xí),樹立終身學(xué)習(xí)理念,知道不同勞動(dòng)和職業(yè)具有獨(dú)特價(jià)值,理解愛崗 敬業(yè)的重要性,,做好自己的職業(yè)規(guī)劃和準(zhǔn)備,能夠踐行社會(huì)主義核心價(jià)值觀。第七課內(nèi)容基本邏輯是立足當(dāng)下、回望過去、展望未來。引導(dǎo)學(xué)生反思個(gè) 人成長的維度和方式,理解個(gè)人成長的關(guān)鍵,明白過程和結(jié)果的辯證關(guān)系,了 解初中生活之后的發(fā)展路徑與內(nèi)容,理解學(xué)習(xí)和實(shí)踐的關(guān)系。激勵(lì)他們樹立 遠(yuǎn)大志向,做有自信,懂自尊,能自強(qiáng)的中國人成為中華民族的棟梁。

  • 小學(xué)美術(shù)人教版二年級(jí)上冊(cè)《第1課流動(dòng)的顏色》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版二年級(jí)上冊(cè)《第1課流動(dòng)的顏色》教學(xué)設(shè)計(jì)說課稿

    一、導(dǎo)入:1、請(qǐng)一位同學(xué)和老師一起做游戲:老師有紅、黃、藍(lán)三種顏色,兩人各滴一種顏色在畫紙上,再用吸管吹,讓顏料混合、互相滲透。讓全班同學(xué)觀察兩種顏色互相滲透的變化過程,并且把看到的變化分別在小組里說一說。2、請(qǐng)兩位同學(xué)上臺(tái),再做一次游戲,把看到的變化經(jīng)小組討論后,在班上說一說。3、教師小結(jié):兩種流動(dòng)的顏色在互相混合、滲透的過程中變幻無窮,今天,我們一起動(dòng)手試試,看看這種美妙的變化。4、揭示課題:流動(dòng)的顏色

  • 小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力2》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力2》教學(xué)設(shè)計(jì)說課稿

    一、導(dǎo)入新課上課,同學(xué)們好!今天的美術(shù)課和平時(shí)有點(diǎn)不一樣,主要有兩個(gè)方面,其一、教室里來了許多老師和我們一起來上這一堂美術(shù)課,大家用掌聲表示歡迎。其二、就是唐老師為大家?guī)砹艘晃恍』锇?,同學(xué)們肯定會(huì)喜歡上它的,大家看,它來了--展示課件動(dòng)畫圖片和播放聲音,出現(xiàn)一個(gè)小圓點(diǎn),(說話:同學(xué)們,大家好!我的名字叫小圓點(diǎn),我喜歡穿各種色彩的衣服,我的本領(lǐng)可大啦!能大能小,位置和大小的變化還能給人產(chǎn)生不一樣的感覺!在生活中和美術(shù)作品中經(jīng)常可以見到我的身影!大家都稱我為魅力的小圓點(diǎn)呢?。?/p>

  • 小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力1》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第2課點(diǎn)的魅力1》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析四年級(jí)的學(xué)生正處于素質(zhì)教育的階段,學(xué)生對(duì)美術(shù)正逐步深入了解,并掌握了一些美術(shù)基礎(chǔ)知識(shí)和基本技能,多數(shù)同學(xué)對(duì)美術(shù)興趣濃厚,有較強(qiáng)的求知欲和教強(qiáng)的創(chuàng)新力,學(xué)生的美術(shù)素質(zhì)得到進(jìn)一步提高。3重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):讓學(xué)生從大自然和生活的萬物中發(fā)現(xiàn)線條的幾種變化,發(fā)現(xiàn)圓點(diǎn)在紙上的不同位置產(chǎn)生的不同感覺。

  • 小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第16課千姿百態(tài)的帽子》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級(jí)下冊(cè)《第16課千姿百態(tài)的帽子》教學(xué)設(shè)計(jì)說課稿

    1、通過欣賞各式各樣的帽子的基本結(jié)構(gòu)和作用。了解帽子制作的基本過程。2、通過教學(xué)是學(xué)生初步掌握裝飾的基本方法(折、剪貼、插接、鏤空等),提高他們的語言表達(dá)能力。3、教師鼓勵(lì)學(xué)生積極參與游戲和制作,努力使自己的帽子與眾不同,體驗(yàn)制作過程的樂趣。3學(xué)情分析從學(xué)生掌握知識(shí)的角度看,他們已經(jīng)掌握了基本的手工制作方法,而本學(xué)期學(xué)生通過了前面的剪紙的練習(xí),這使他們的動(dòng)手能力進(jìn)一步提高,因此為本課打下了良好的基礎(chǔ)。從學(xué)生的特征看,這個(gè)年齡段的孩子對(duì)手工有著濃厚的興趣,喜歡嘗試制作新奇的東西。但部分基礎(chǔ)差的同學(xué)缺乏耐性和信心。教師對(duì)于這種情況,可利用優(yōu)秀作品為參照物激發(fā)其靈感,鼓勵(lì)創(chuàng)作。

  • 小學(xué)美術(shù)人教版二年級(jí)上冊(cè)《第3課裝飾自己的名字》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版二年級(jí)上冊(cè)《第3課裝飾自己的名字》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析二年級(jí)學(xué)生活潑可愛,思維獨(dú)特,喜歡按照自己的想法自由地表現(xiàn)畫面。好奇心強(qiáng),愛表現(xiàn)自己,但動(dòng)手能力較差,只能用簡單的工具和繪畫材料來稚拙地表現(xiàn)自己的想法。本課以學(xué)生親切、熟悉的名字為題材,更好的激發(fā)學(xué)生的表現(xiàn)欲望和獨(dú)創(chuàng)思維,讓學(xué)生能夠自信、大膽、自由地通過美術(shù)形式表達(dá)想法與感情。3重點(diǎn)難點(diǎn)重點(diǎn):設(shè)計(jì)具有自己特色的名字。難點(diǎn):能對(duì)名字的字形進(jìn)行分析,巧妙地運(yùn)用筆畫特征進(jìn)行想象設(shè)計(jì)。教學(xué)活動(dòng)

  • 小學(xué)美術(shù)人教版三年級(jí)上冊(cè)《第1課魔幻的顏色》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版三年級(jí)上冊(cè)《第1課魔幻的顏色》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析1、學(xué)生學(xué)習(xí)美術(shù)的態(tài)度:很多學(xué)生上美術(shù)課時(shí)會(huì)抱著“玩”的心理,針對(duì)學(xué)生的這種思想,我們應(yīng)當(dāng)根據(jù)學(xué)生的年齡特點(diǎn),在備課過程中注意挖掘教材中有趣的內(nèi)容,尋找學(xué)生的興趣點(diǎn),充分地讓美術(shù)教學(xué)體現(xiàn)出身心愉悅的活動(dòng)特點(diǎn),寓教于樂,防止把美術(shù)課變成一種枯燥的令人生厭的勞動(dòng)。2、學(xué)生認(rèn)知發(fā)展分析:在美術(shù)課堂上常常聽到這樣的聲音:“我畫(做)不好”、“我不會(huì)畫(做)”;這就需要美術(shù)教師在課堂教學(xué)中注重引導(dǎo)學(xué)生感受、觀察、體會(huì)、表現(xiàn),讓學(xué)生在一系列“玩中學(xué)”的活動(dòng)過程中慢慢樹立信心。所以圍繞本課教學(xué)目的和任務(wù),我采用情境教學(xué)法、觀察對(duì)比法、直觀演示法三種教學(xué)方式;學(xué)生運(yùn)用四種方法進(jìn)行學(xué)習(xí):觀察法、討論法、實(shí)踐體驗(yàn)法、合作交流法;努力營造一個(gè)開放和諧的課堂氛圍,順利完成教學(xué)目標(biāo)。

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 小學(xué)美術(shù)桂美版一年級(jí)上冊(cè)《第10課神奇的果樹》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)桂美版一年級(jí)上冊(cè)《第10課神奇的果樹》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析 新入學(xué)的學(xué)生第一次接觸正規(guī)化的美術(shù)課,對(duì)一年級(jí)學(xué)生來說是新 奇、有趣、好玩的,而且新生入學(xué)前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個(gè)性,但這些會(huì)造成學(xué)習(xí)的不一致性、習(xí)慣不統(tǒng)一化,給 美術(shù)課的課堂帶來不必要的麻煩。因此, 對(duì)待這些剛進(jìn)入課堂的小朋友, 我們?cè)谇楦袘B(tài)度上要做出很大 的努力,小學(xué)生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機(jī)會(huì), 激發(fā)孩子們對(duì)美術(shù)學(xué)習(xí)的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。

  • 小學(xué)美術(shù)桂美版三年級(jí)上冊(cè)《第10課漂亮的紙袋》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)桂美版三年級(jí)上冊(cè)《第10課漂亮的紙袋》教學(xué)設(shè)計(jì)說課稿

    一.激趣導(dǎo)入?! ?. 教師展示做好的漂亮紙袋,讓孩子們產(chǎn)生想要?jiǎng)邮值脑竿? 2.結(jié)合多媒體課件,出示漂亮紙袋?! ⊥瑢W(xué)們,這些袋子漂亮嗎?你喜歡嗎?發(fā)現(xiàn)這些紙袋都是什么做成的?下面我們就來做一做這些漂亮的紙袋。  二.學(xué)習(xí)制作紙袋的基本過程?! ?.教師出示制作紙袋需要準(zhǔn)備好的東西,讓孩子們自主檢查是否準(zhǔn)備齊全?! ?.多媒體出示紙袋制作步驟,讓學(xué)生注意觀察,清晰每一步制作的過程: ?。?)把長方形的對(duì)折,畫上虛線,用小剪刀剪去我們不需要的部分,然后用雙面膠粘貼,形成一個(gè)紙袋。

上一頁123...151617181920212223242526下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!