二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠(chǎng)規(guī)定:該廠(chǎng)家屬區(qū)的每戶(hù)居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶(hù)居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶(hù)2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶(hù)居民3月、4月的用電情況和交費(fèi)情況
易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類(lèi)型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長(zhǎng),當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類(lèi)型三】 根據(jù)實(shí)際問(wèn)題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).
小劉同學(xué)用10元錢(qián)購(gòu)買(mǎi)兩種不同的賀卡共8張,單價(jià)分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個(gè)方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個(gè)相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢(qián)數(shù)+2元賀卡錢(qián)數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個(gè)方程組符合題意,可從題目中找出兩個(gè)相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書(shū)設(shè)計(jì)二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過(guò)自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會(huì)逐步掌握基本的數(shù)學(xué)知識(shí)和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識(shí),提高解決問(wèn)題的能力,感受數(shù)學(xué)創(chuàng)造的樂(lè)趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對(duì)數(shù)學(xué)較全面的體驗(yàn)和理解.
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤(rùn)為y元.(1)寫(xiě)出m與x的關(guān)系式;(2)寫(xiě)出y與x的函數(shù)關(guān)系式.(不要求寫(xiě)自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤(rùn)y=甲產(chǎn)品的利潤(rùn)+乙產(chǎn)品的利潤(rùn).解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時(shí),一般是求什么,設(shè)什么,并且所列方程的個(gè)數(shù)與未知數(shù)的個(gè)數(shù)相等.解這類(lèi)問(wèn)題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書(shū)設(shè)計(jì)列方程組,解決問(wèn)題)一般步驟:審、設(shè)、列、解、驗(yàn)、答關(guān)鍵:找等量關(guān)系通過(guò)“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問(wèn)題情景,學(xué)生體會(huì)到數(shù)學(xué)中的“趣”;進(jìn)一步強(qiáng)調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實(shí)際價(jià)值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則紙盒底面的長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書(shū)設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常 數(shù),a≠0),其中ax2,bx,c 分別稱(chēng)為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱(chēng)為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過(guò)豐富的實(shí)例,讓學(xué)生觀(guān)察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過(guò)本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辯證唯物主義觀(guān)點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書(shū)設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
一、教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)第23~25頁(yè)全部?jī)?nèi)容二、編寫(xiě)意圖:“計(jì)算工具的認(rèn)識(shí)”分別介紹了計(jì)算工具算盤(pán)和計(jì)算器,還安排了有關(guān)計(jì)具的發(fā)展歷史和現(xiàn)狀的閱讀材料。教材安排了較多的直觀(guān)圖戰(zhàn)士了算盤(pán)和計(jì)算器的實(shí)際應(yīng)用、算盤(pán)和計(jì)算器的結(jié)構(gòu),比較形象直觀(guān),讓學(xué)生在觀(guān)察和活動(dòng)中認(rèn)識(shí)常用的計(jì)算工具。三、教學(xué)目標(biāo):鑒于以上分析,我把本課的教學(xué)目標(biāo)定位為以下三個(gè)方面:1.讓生初步認(rèn)識(shí)計(jì)算器,了解計(jì)算器的基本功能,會(huì)使用計(jì)算器進(jìn)行大數(shù)目的計(jì)算,通過(guò)計(jì)算探索發(fā)現(xiàn)一些簡(jiǎn)單的數(shù)學(xué)規(guī)律,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。2.通過(guò)對(duì)計(jì)算器的運(yùn)用,體驗(yàn)用計(jì)算器進(jìn)行計(jì)算的優(yōu)點(diǎn),進(jìn)一步培養(yǎng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,感受用計(jì)算器計(jì)算在人類(lèi)生活和工作中的價(jià)值。3.在自主探究的學(xué)習(xí)過(guò)程中培養(yǎng)學(xué)生的問(wèn)題意識(shí)和創(chuàng)新意識(shí),在解決實(shí)際問(wèn)題中,滲透節(jié)約、環(huán)保等方面意識(shí),使學(xué)生受到思想教育。
讓學(xué)生再用計(jì)算器計(jì)算,然后讓學(xué)生談?wù)動(dòng)龅降膯?wèn)題(計(jì)算器已經(jīng)不能把這些數(shù)顯示出來(lái)了)。最后讓學(xué)生根據(jù)上面的計(jì)算結(jié)果,找出規(guī)律,再直接寫(xiě)出后四題的得數(shù),并組織學(xué)生交流,要求學(xué)生說(shuō)說(shuō)自己的思考過(guò)程及依據(jù),確認(rèn)發(fā)現(xiàn)的規(guī)律,讓學(xué)生進(jìn)一步體會(huì)計(jì)算器的作用:計(jì)算器還可以幫助我們探索規(guī)律。(設(shè)計(jì)意圖:設(shè)計(jì)不同層次的練習(xí),使學(xué)生體驗(yàn)計(jì)算器的有用性,提高學(xué)生解決問(wèn)題的能力,培養(yǎng)學(xué)生辨證思維能力)四、最后進(jìn)行全課總結(jié)。整個(gè)活動(dòng),老師創(chuàng)設(shè)情境,啟發(fā)誘導(dǎo),設(shè)疑激趣,學(xué)生自主探索,動(dòng)手操作,積極思考,討論交流,給學(xué)生提供了充分的數(shù)學(xué)活動(dòng)機(jī)會(huì),充分發(fā)揮了學(xué)生的主體作用,使學(xué)生不僅掌握了知識(shí),發(fā)展了能力,同時(shí)又體驗(yàn)了數(shù)學(xué)問(wèn)題的探索性與創(chuàng)造性,以及成功的喜悅,學(xué)生學(xué)得輕松,學(xué)得主動(dòng),學(xué)有創(chuàng)造,學(xué)有發(fā)展
二、編寫(xiě)意圖:“計(jì)算工具的認(rèn)識(shí)”分別介紹了計(jì)算工具算盤(pán)和計(jì)算器,還安排了有關(guān)計(jì)算工具的發(fā)展歷史和現(xiàn)狀的閱讀材料。教材安排了較多的直觀(guān)圖戰(zhàn)士了算盤(pán)和計(jì)算器的實(shí)際應(yīng)用、算盤(pán)和計(jì)算器的結(jié)構(gòu),比較形象直觀(guān),讓學(xué)生在觀(guān)察和活動(dòng)中認(rèn)識(shí)常用的計(jì)算工具。三、教學(xué)目標(biāo):鑒于以上分析,我把本課的教學(xué)目標(biāo)定位為以下三個(gè)方面:1、讓生初步認(rèn)識(shí)計(jì)算器,了解計(jì)算器的基本功能,會(huì)使用計(jì)算器進(jìn)行大數(shù)目的計(jì)算,通過(guò)計(jì)算探索發(fā)現(xiàn)一些簡(jiǎn)單的數(shù)學(xué)規(guī)律,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。2、通過(guò)對(duì)計(jì)算器的運(yùn)用,體驗(yàn)用計(jì)算器進(jìn)行計(jì)算的優(yōu)點(diǎn),進(jìn)一步培養(yǎng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,感受用計(jì)算器計(jì)算在人類(lèi)生活和工作中的價(jià)值。3、在自主探究的學(xué)習(xí)過(guò)程中培養(yǎng)學(xué)生的問(wèn)題意識(shí)和創(chuàng)新意識(shí),在解決實(shí)際問(wèn)題中,滲透節(jié)約、環(huán)保等方面意識(shí),使學(xué)生受到思想教育。
教學(xué)目標(biāo):知識(shí)與技能:1、使學(xué)生初步體會(huì)對(duì)策論方法在解決實(shí)際問(wèn)題中的應(yīng)用。2使學(xué)生認(rèn)識(shí)到解決問(wèn)題策略的多樣性,形成尋找解決問(wèn)題最優(yōu)方案的意識(shí)。3、培養(yǎng)學(xué)生的應(yīng)用意識(shí)和解決實(shí)際問(wèn)題的能力。過(guò)程與方法:使學(xué)生理解優(yōu)化的思想,形成從多種方案中尋找最優(yōu)方案的意識(shí),提高學(xué)生解決問(wèn)題的能力。情感、態(tài)度和價(jià)值觀(guān):使學(xué)生感受到數(shù)學(xué)在日常生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決生活中的簡(jiǎn)單問(wèn)題。重點(diǎn):體會(huì)優(yōu)化的思想難點(diǎn):尋找解決問(wèn)題最優(yōu)方案,提高學(xué)生解決問(wèn)題的能力。教具:圖片教學(xué)過(guò)程:一、情境導(dǎo)入:1、你們聽(tīng)過(guò)“田忌賽馬“的故事嗎?田忌是怎樣贏了齊王的?誰(shuí)能給大家講一講這個(gè)故事?2、問(wèn):田忌的馬都不如齊王的馬,但他卻贏了?這是為什么呢?3、這節(jié)課我們就來(lái)研究研究。板書(shū)課題:數(shù)學(xué)廣角
(一)創(chuàng)設(shè)問(wèn)題情境:師:小朋友,你們喜歡老師漂亮一點(diǎn)呢還是喜歡老師丑一點(diǎn)?生:大多數(shù)的小朋友說(shuō)喜歡老師漂亮。師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請(qǐng)小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見(jiàn),并說(shuō)出了自己的理由。師:謝謝。你們的建議都不錯(cuò)。那我這一件上衣、三件下衣能有多少種不同的穿法呢?老師接著問(wèn):那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說(shuō)4種、有說(shuō)5種、也有說(shuō)6種的,到底有幾種呢?(二)1.自主合作探索新知試一試師:請(qǐng)同學(xué)們也試著想一想,如果你覺(jué)得直接想象有困難的話(huà)可以借助手中的學(xué)具卡片擺一擺。學(xué)生活動(dòng)教師巡視。2.發(fā)現(xiàn)問(wèn)題學(xué)生匯報(bào)所寫(xiě)個(gè)數(shù),教師根據(jù)巡視的情況重點(diǎn)展示幾份,引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題:有的重復(fù)了,有的漏寫(xiě)了。
方法三:我先把數(shù)字1放在個(gè)位,然后把數(shù)字2和3分別放在十位組成21和31;我再把數(shù)字2放在個(gè)位,然后把數(shù)字1和3分別放在十位組成12和32;我再把數(shù)字3放在個(gè)位,然后把數(shù)字1和2分別放在十位組成13和23,一共擺出了6個(gè)兩位數(shù)。(21、31、12、32、13、23)每種方法說(shuō)完后師問(wèn):還能擺嗎?(再擺就要重復(fù)了!提示:不能遺漏也不能重復(fù))師小結(jié):排數(shù)的時(shí)候按照一定的順序既不會(huì)重復(fù)也不會(huì)遺漏。我們用3個(gè)不同的一位數(shù)拼成了幾個(gè)不同的兩位數(shù)?(板書(shū):6個(gè))可拓展:三只動(dòng)物抽到卡片后最多能組成21、31、32那誰(shuí)可以和聰聰一起坐呀?小貓很幸運(yùn),他抽到了2和3,那么他一定會(huì)擺出一個(gè)……(三)握手小動(dòng)物們謝謝我們幫他們一起解決了這些數(shù)學(xué)問(wèn)題,一定要讓老師表示謝意,好謝謝你們。(老師過(guò)去和學(xué)生握手。分別找?guī)讉€(gè)人握手,讓學(xué)生觀(guān)察,每?jī)蓚€(gè)人握一次手。)
教材分析:"雞兔同籠"問(wèn)題是我國(guó)民間廣為流傳的數(shù)學(xué)趣題,最早出現(xiàn)在《孫子算經(jīng)》中。教材在本單元安排“雞兔同籠”問(wèn)題,一方面可以培養(yǎng)學(xué)生的邏輯推理能力;另一方面使學(xué)生體會(huì)代數(shù)方法的一般性?!半u兔同籠”的原題數(shù)據(jù)比較大,不利于首次接觸該類(lèi)問(wèn)題的學(xué)生進(jìn)行探究,因此教材先編排了例1,通過(guò)化繁為間的思想,幫助學(xué)生先探索出解決該類(lèi)問(wèn)題的一般方法后,再解決《孫子算經(jīng)》中數(shù)據(jù)比較大的原題。解決“雞兔同籠”問(wèn)題時(shí),教材展示了學(xué)生逐步解決問(wèn)題的過(guò)程,既猜測(cè)、列表、假設(shè)或方程解。其中假設(shè)和列方程解是解決該類(lèi)問(wèn)題的餓一般方法。“假設(shè)法”有利于培養(yǎng)學(xué)生的邏輯推理能力,列方程則有助于學(xué)生體會(huì)代數(shù)方法的一般性。因此在解決“雞兔同籠”問(wèn)題時(shí),學(xué)生選用哪種方法均可,不強(qiáng)求用某一種方法。
雖然在此之前已經(jīng)聽(tīng)過(guò)多節(jié)有關(guān)的研討課,但臨到自己教學(xué)時(shí)才真正體會(huì)到本課教學(xué)的艱難。一是信息化時(shí)代對(duì)郵政編碼的沖突。其實(shí)我在教學(xué)前也僅僅只知道學(xué)校和家庭住址的郵編,至于郵政編碼的結(jié)構(gòu)含義等是完全陌生。在課堂前測(cè)中了解到,全班僅3人有寫(xiě)信寄信的經(jīng)歷(這三名學(xué)生的老家都遠(yuǎn)離湖北省),他們知道老家的郵編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過(guò)的舊信封??梢哉f(shuō)在學(xué)習(xí)本課前師生對(duì)郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學(xué)生“一杯水”?雖然在課前布置學(xué)生收集了一些有關(guān)郵政編碼的知識(shí),自己也進(jìn)行了大量的查詢(xún),但在實(shí)際教學(xué)中仍舊倍感吃力。如有學(xué)生質(zhì)疑“為什么書(shū)上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學(xué)校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關(guān)系?”一個(gè)接一個(gè)問(wèn)題“炮轟”過(guò)來(lái),著實(shí)招架不住。