例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?
1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應用?!練w納總結】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.
教學設計說明:本節(jié)課從學生接觸到的實際問題出發(fā),結合新課程標準的理念,創(chuàng)造性地使用教材而設計的一節(jié)課,是前面線段的比、成比例線段等知識在現(xiàn)實生活中的應用. 一開始情境的創(chuàng)設——彩色圖片的投影,給學生以美的感覺,激發(fā)學生的求知欲.通過實際生活中的例子,讓學生自己發(fā)表自己的看法,培養(yǎng)學生的審美情趣,又從學生最感興趣的奧運會的比賽中引出今天所要學習的內(nèi)容,從而進一步培養(yǎng)學生的愛國主義情感.在教學設計中,充分發(fā)揮了學生的主觀能動性,通過小組討論,師生間的合作交流,解決了本節(jié)課的重點和難點.讓每個學生都能從同伴的交流中獲益,同時也培養(yǎng)了學生的合作意識,提高了學生的動手操作的能力.本節(jié)課在教學設計中主要運用了引導探究、分組討論的教學方法;引導學生自主探究、合作交流的研討學習方式,確立了學生的主體地位.
1.多媒體的合理應用,可極大的激發(fā)學生的學習興趣,提高教學效果.在本節(jié)課的“情境引入”這一教學環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學生以視覺沖擊,產(chǎn)生了視覺和心理的震撼,這樣在課堂“第一時間”抓住了學生的注意力、極大的激發(fā)了學生的學習熱情,將十分有利于后面教學活動的開展,提高課堂教學效果.2.附有挑戰(zhàn)性的“問題(或活動)”、層層深入的“問題串”可激發(fā)學生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動”這一教學環(huán)節(jié)中的“做一做”設計的4個活動,由簡單的“模仿”到“創(chuàng)作設計、觀察思考”循序漸進、挑戰(zhàn)性逐漸增大,不斷激發(fā)學生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學運用”這一教學環(huán)節(jié)中的“例2”設計的2個問題層層深入,現(xiàn)實情境味很濃,學生做起來饒有興趣.
說明:此處進行的是一次嘗試應用乘方運算來解決開頭的問題,互相呼應,以體現(xiàn)整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復和模仿,通過本節(jié)課的學習,多數(shù)學生應該可以較輕松地完成??傊?,在整個教學設計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學生主動自覺地去思考、探索、總結直至發(fā)現(xiàn)結果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學。
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應該吸取經(jīng)驗教訓,再以后的教學中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!
在答案的匯總過程中,要肯定學生的探索,愛護學生的學習興趣和探索欲.讓學生作課堂的主人,陳述自己的結果.對學生的不完整或不準確回答,教師適當延遲評價;要鼓勵學生創(chuàng)造性思維,教師要及時抓住學生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學生創(chuàng)造力、充分挖掘潛能的有效途徑.預先設想學生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負數(shù)+負數(shù);正數(shù)+負數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對值相加;加數(shù)的絕對值相減)⑤ 從和的符號確定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)教學中要避免課堂熱熱鬧鬧,卻陷入數(shù)學教學的淺薄與貧乏.
1、 教材的地位和作用本課教材所處位置,是小學所學算術數(shù)之后數(shù)的范圍的第一次擴充,是算術數(shù)到有理數(shù)的銜接與過渡,并且是以后學習數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎.2、 教學目標①理解有理數(shù)產(chǎn)生的必然性、合理性及有理數(shù)的分類;②能辨別正、負數(shù),感受規(guī)定正、負的相對性;③體驗中國古代在數(shù)的發(fā)展方面的貢獻.3、 教學重點和難點教學重點:理解正數(shù)和負數(shù)的概念和有理數(shù)概念.教學難點:對負數(shù)概念的理解和有理數(shù)的分類.二、 教學分析鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學法及情感教學,創(chuàng)設問題情境,引導學生主動思考,用大量的實例和生動的語言激發(fā)學生學習興趣,調(diào)節(jié)學習情緒。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數(shù)形結合的思想讓學生討論: 3、數(shù)軸上的點P與表示有理數(shù)3的點A距離是2, (1)試確定點P表示的有理數(shù); (2)將A向右移動2個單位到B點,點B表示的有理數(shù)是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數(shù)是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據(jù)學生的特點,師生共同小結: 1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數(shù)軸嗎?你會畫數(shù)軸嗎?這節(jié)課你學會了用什么來表示有理數(shù)? 2、數(shù)軸上,會不會有兩個點表示同一個有理數(shù)?會不會有一個點表示兩個不同的有理數(shù)? 讓學生牢固掌握一個有理數(shù)只對應數(shù)軸上的一個點,并能說出數(shù)軸上已知點所表示的有理數(shù)。
一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關系,建立一元一次方程并用之解決實際問題,是學生運用數(shù)學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數(shù)學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設條件中找不到所依據(jù)的等量關系,或雖能找到等量關系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關系,建立方程,從而將圖形問題代數(shù)化。
按此規(guī)律,第n個式子是 。師生活動:學生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結論。設計意圖:進一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學式子表示實際問題中的數(shù)量關系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學喜歡上數(shù)學課,那么0.8p 就可以表示我們班喜歡數(shù)學課的人數(shù)。學生思考、交流后發(fā)言五、練習檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數(shù)比a的 倍小5,則這個數(shù)為 ;(3)全校學生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計算機 x 臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學校三年共購買計算機 臺;(5)某班有a名學生,現(xiàn)把一批圖書分給全班學生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數(shù),十位上的數(shù)字為a,個位上的數(shù)字b,則這個兩位數(shù)為 .師生活動:學生板演,師生共同評價總結注意(5)帶分數(shù)化假分數(shù)設計意圖:進一步提高用含有字母的式子表示實際問題中的數(shù)量關系的能力。
方法總結:絕對值小于1的數(shù)也可以用科學記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結:將科學記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設計用科學記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負整數(shù).從本節(jié)課的教學過程來看,結合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調(diào)動,在拓展學生學習空間的同時,又有效地保證了課堂學習質(zhì)量
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調(diào)學生自主探索和合作交流,結合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結:解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設計1.用折線型圖象表示變量間關系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學生的抽象思維能力,經(jīng)歷從實際問題中得到關系式這一過程,提升學生的數(shù)學應用能力,使學生在探索過程中體驗成功的喜悅,樹立學習的自信心.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣
方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質(zhì)疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結:用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.