提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

學做家常菜教學設(shè)計教案

  • 小學美術(shù)人教版六年級下冊《第13課畢業(yè)啦》教學設(shè)計說課稿

    小學美術(shù)人教版六年級下冊《第13課畢業(yè)啦》教學設(shè)計說課稿

    活動1【導入】談話引入設(shè)計意圖:這一環(huán)節(jié),是一首小詩來激發(fā)學生的離別情感,勾起學生對小學六年生活的美好回憶,從而導入新課。同學們,今天老師給大家?guī)淼牟皇敲利惖膱D畫,而是一首我寫的詩,你們誰愿意來第一個來欣賞一下。出示課件1:學生配樂朗讀:每到六年級心里就有些難過你們就要離開而我剛剛收獲我不知道你們將來會怎樣生活你們總說你們永遠永遠記得我

  • 小學美術(shù)人教版二年級上冊《第1課流動的顏色》教學設(shè)計說課稿

    小學美術(shù)人教版二年級上冊《第1課流動的顏色》教學設(shè)計說課稿

    一、導入:1、請一位同學和老師一起做游戲:老師有紅、黃、藍三種顏色,兩人各滴一種顏色在畫紙上,再用吸管吹,讓顏料混合、互相滲透。讓全班同學觀察兩種顏色互相滲透的變化過程,并且把看到的變化分別在小組里說一說。2、請兩位同學上臺,再做一次游戲,把看到的變化經(jīng)小組討論后,在班上說一說。3、教師小結(jié):兩種流動的顏色在互相混合、滲透的過程中變幻無窮,今天,我們一起動手試試,看看這種美妙的變化。4、揭示課題:流動的顏色

  • 空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    傾斜角與斜率教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經(jīng)y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點B(4,3)關(guān)于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

  • 兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 直線與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 小學美術(shù)桂美版三年級上冊《第18課十二生肖2》教學設(shè)計說課稿

    小學美術(shù)桂美版三年級上冊《第18課十二生肖2》教學設(shè)計說課稿

    2學情分析在這節(jié)課中,我恰當?shù)剡\用多種教學手段,利用學生及教師自身的優(yōu)勢,在課堂上師生共同參與教學活動,充分發(fā)揮了學生的主體作用,使每個學生都成為學習活動的主人,從中獲得許多新鮮的感受。本設(shè)計從課題入手,設(shè)謎導入,通過畫一畫,引導學生抓住生肖動物的外形特征,要學生利用身邊各種材料,設(shè)計制作出自己喜愛的或自己的生肖工藝品,讓學生感受中國傳統(tǒng)文化的源遠流長。

  • 小學美術(shù)桂美版一年級上冊《第1課美麗的大自然》教學設(shè)計說課稿

    小學美術(shù)桂美版一年級上冊《第1課美麗的大自然》教學設(shè)計說課稿

    教學目標  知識目標:通過欣賞大自然的圖片,感知大自然不同特點的美?! 〖寄苣繕耍耗苡米约合矚g的方式表達對不同自然美的感受?! ∏楦袘B(tài)度與價值觀:培養(yǎng)學生熱愛大自然的情感,及愛護大自然的情感?! 〗虒W重點讓學生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達自己的感受?! 〗虒W難點學習用審美的眼光去觀察大自然?! ≈饕谭▎l(fā)引導法、自學嘗試法  學習指導體驗探究法輔助指導法  教學資源教師:教材、課件。  學生:教材、自然風光片  教學過程:  教學活動教學意圖  教師學生

  • 小學美術(shù)桂美版三年級上冊《第17課走進昆蟲世界》教學設(shè)計說課稿

    小學美術(shù)桂美版三年級上冊《第17課走進昆蟲世界》教學設(shè)計說課稿

    2學情分析 本課是廣西版小學三年級上冊美術(shù)第十七課的內(nèi)容,是一節(jié)繪畫課,屬于課程目標中造型.表現(xiàn)的學習領(lǐng)域。在這一節(jié)課里,要求學生學會制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學科知識和美術(shù)學科知識為一體,通過引導學生欣賞昆蟲的形體、色彩、生理結(jié)構(gòu),教會學生甄別昆蟲。利用學生喜愛昆蟲的特點,引導學生運用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對折、剪貼的方法制作小昆蟲。激發(fā)學生豐富的想象力和創(chuàng)造愿望。

  • 小學美術(shù)桂美版一年級上冊《第7課泥巴真好玩》教學設(shè)計說課稿

    小學美術(shù)桂美版一年級上冊《第7課泥巴真好玩》教學設(shè)計說課稿

    2學情分析 通過本課的學習,調(diào)動和激發(fā)學生參與學習活動的熱情,使學生在游戲活動中通過教師的引導及自己動手實踐的親身體驗,感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時,在教師的鼓勵下,使學生能大膽自由的進行造型活動并大膽發(fā)表自我感受。3重點難點 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達。

  • 小學美術(shù)桂美版一年級上冊《第4課動物的花衣裳》教學設(shè)計說課稿

    小學美術(shù)桂美版一年級上冊《第4課動物的花衣裳》教學設(shè)計說課稿

    2學情分析 1、這一課是一年級的“造型·表現(xiàn)”學習領(lǐng)域,一年級孩子自制力較差,注意力集中時間不長,缺乏一定的造型能力,但好奇心很強,表現(xiàn)欲望非常強烈,非常希望得到老師和同學們的認可,從他們的興趣入手就能達到事半功倍的效果;2、教學方式應(yīng)該是直觀的;3、讓學生通過欣賞與想象進行創(chuàng)作,激發(fā)他們對大自然的興趣,感受大自然的美。

  • 小學美術(shù)桂美版一年級上冊《第6課送給老師的愛》教學設(shè)計說課稿

    小學美術(shù)桂美版一年級上冊《第6課送給老師的愛》教學設(shè)計說課稿

    教學過程:一、組織教學,導入學習1.觀察導入,激發(fā)興趣(教具出示)2.教師和學生一起做猜節(jié)日的游戲,激發(fā)學生的興趣。 每年的9月10日都是教師們最開心的日子,也是學生們表達對老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會應(yīng)當尊重教師。

  • 小學美術(shù)桂美版三年級上冊《第12課小掛飾1》教學設(shè)計說課稿

    小學美術(shù)桂美版三年級上冊《第12課小掛飾1》教學設(shè)計說課稿

    2學情分析三年級(2)班大部分學生喜愛美術(shù)課,喜歡做一些折紙、小制作。在準備材料方面,多數(shù)學生能準備較充分。本節(jié)課我想利用剪、粘、畫等制作方法,圍繞如何運用廢舊的材料制作小掛飾,從中培養(yǎng)學生的設(shè)計意識和操作能力。教學主要使學生通過觀察、創(chuàng)作來表達自己的生活感受,提高學生的美術(shù)素養(yǎng)。3重點難點尋找與眾不同的材料來制作掛飾,熟練并安全地使用工具進行制作,向同學們展示自己的作品并說明掛飾的用途。

  • 小學美術(shù)桂美版三年級上冊《第15課實用美觀的竹器》教學設(shè)計說課稿

    小學美術(shù)桂美版三年級上冊《第15課實用美觀的竹器》教學設(shè)計說課稿

    2學情分析本課內(nèi)容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學習內(nèi)容,目的是要求學生用線描的方法對竹器的外形及竹編的篾紋進行描繪,鍛煉學生對事物的觀察能力和表現(xiàn)能力。在此之前學生已經(jīng)學過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內(nèi)容的學習起到了鋪墊作用,同時為后面的素描教學內(nèi)容打下造型基礎(chǔ)。

上一頁123...131415161718192021222324下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!