解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結果,每種結果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉盤做“配紫色”游戲,每個轉盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設計兩個轉盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結,回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?
觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內?對于函數(shù) ,兩支曲線又分別位于哪個象限內?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內,當k<0時,它的圖像位于二、四象限內;(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。
補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
(1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現(xiàn)空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
教學目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設計一、實物觀察、空間想像設置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結:求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關系.讓學生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生的觀察、動手探究、歸納總結的能力.
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學生練習:1. 討論隨堂練 習第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習第2題六、小結本節(jié)主要學習了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):
同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結:(1)各個圖形中的三角形均為格點三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學生已學的知識入手,通過設置問題,引導學生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關系.讓學生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學生的合情推理能力,培養(yǎng)學生與他人交流、合作的意識和品質.
(一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.
[想一想]同學們經(jīng)歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認為最優(yōu)化的方法是哪種?思路點拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時,再量旗桿的影子,此時旗桿的影子長度就是這個旗桿的高度.2、可以采用立一個已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據(jù)線段成比例來進行計算.3、拿一根知道長度的直棒,手臂伸直,不斷調整自己的位置,使直棒剛好完全擋住旗桿,量出此時人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進行計算.等等.第四環(huán)節(jié) 課堂小結1、本節(jié)課你學到了哪些知識?2、在運用科學知識進行實踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數(shù)學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學活動的經(jīng)驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結:解決本題的關鍵是構造相似三角形,然后利用相似三角形的性質求出對應線段的長度.三、板書設計投影的概念與中心投影投影的概念:物體在光線的照射下,會 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關系的活動中,體會立體圖形與平面圖形的相互轉化關系,發(fā)展學生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結規(guī)律,培養(yǎng)學生觀察問題、分析問題的能力.
方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
五、回顧總結:總結:1、投影、中心投影 2、如何確定光源(小組交流總結.)六、自我檢測:檢測:晚上,小華在馬路的一側散步,對面有一路燈,當小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關系?七、課后延伸:延伸:課本128頁習題5.1八、板書設計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.
故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據(jù)線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.