【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學(xué)習(xí),使學(xué)生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對稱的三個點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對稱點(diǎn)P3(-x, y)
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點(diǎn)有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過程.
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。
教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點(diǎn):正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點(diǎn):正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時:2學(xué)時教學(xué)過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因?yàn)?利用極坐標(biāo)計算)所以。記,則利用定積分的換元法有因?yàn)?,所以它可以作為某個連續(xù)隨機(jī)變量的概率密度函數(shù)。定義 如果連續(xù)隨機(jī)變量的概率密度為則稱隨機(jī)變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個班的學(xué)生共54人,求這個班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.
教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認(rèn)識吸毒行為,認(rèn)清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠(yuǎn)離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認(rèn)識吸毒成癮的途徑;認(rèn)識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強(qiáng)與毒品違法犯罪作斗爭的自覺性。教學(xué)重點(diǎn):知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。
《秋天的雨》是統(tǒng)編版教材三年級語文上冊第八單元的一篇精讀課文,課文講述了列寧、灰雀和一個孩子之間的故事。這個故事表達(dá)了列寧善解人意,對男孩的敬重、保護(hù)以及男孩的老實(shí)和天真。通過語言和行動來揭示人物的內(nèi)心世界,展現(xiàn)事件的開展進(jìn)程,是本篇課文在表達(dá)上的主要特點(diǎn)。在學(xué)習(xí)時,可以對話為重點(diǎn),研讀課文,通過閱讀人物對話,揣摩體會人物不同的心情,感受列寧愛鳥更愛孩子的情感,懂得知錯就改是誠實(shí)的表現(xiàn),同時產(chǎn)生保護(hù)鳥類等動物的環(huán)保意識。 1.會認(rèn)“寧、胸”等10個生字,會寫“郊、養(yǎng)”等13個生字。2.分角色朗讀課文,讀出對話的語氣。3.帶著問題,邊默讀邊推敲人物的內(nèi)心想法,體會列寧對男孩的尊重和呵護(hù)、男孩的誠實(shí)與天真。4.體會列寧的善解人意、循循善誘和對兒童的愛護(hù),懂得做錯事情應(yīng)該改正的道理,同時教育學(xué)生要愛護(hù)動物。 1.教學(xué)重點(diǎn):通過朗讀對話體會列寧、小男孩心理變化的過程。2.教學(xué)難點(diǎn):能帶著問題,邊默讀邊揣摩人物內(nèi)心的想法。能體會列寧對男孩的尊重與呵護(hù)、男孩的誠實(shí)與天真。 2課時
阿倫.科普蘭是美國現(xiàn)代音樂的倡導(dǎo)者,1920年創(chuàng)作的《貓和老鼠》是一首音樂形象鮮明,詼諧有趣的鋼琴演奏曲。樂曲栩栩如生的表現(xiàn)了貓捉老鼠的情景,不協(xié)和和弦以及多變的節(jié)奏,使作品充滿了現(xiàn)代的氣息。樂曲由引子、A、B、A、尾聲組成。引子中速貓的主題。貓驕傲的懶洋洋的走向高處,兇險的目光窺視周圍。第一樂段開始速度非??欤坍嬃死鲜蟮男蜗?。接著貓在屋子里冷漠的巡視,老鼠靈巧的跑來跑去,一場貓捉老鼠的游戲開始了。第二樂段老鼠得意的逃掉了,它,輕快的跑上跑下。遠(yuǎn)處傳來教堂鐘聲的回響。貓懶洋洋的自我陶醉,老鼠見狀,極其靈巧的故意挑逗貓。第三樂段貓再次撲向老鼠,這次老鼠終于被貓逮著了。美聲慢板送葬去曲,裝死的老鼠一瘸一拐的拖著殘腿悄悄的溜走了。在這部作品中作曲家運(yùn)用了自己獨(dú)特的“躍進(jìn)式”旋律,緊張不安的活躍節(jié)奏,快速的托卡塔(密集)音型、豐富的和聲運(yùn)用樸實(shí)清晰的色彩和富于廣度和深度的想象力。讓人仿佛看到貓和老鼠追逐、爭斗的情形。
1、書中還有許多描寫旺達(dá)的片段,哪一處給你留下了深刻的印象呢?請同座位互相交流。全班交流。老師也想和大家一起分享一點(diǎn)感受。老師讀第13頁片段,并談感受。課件出示:孤單,被嘲笑者2、你有過被人嘲笑的經(jīng)歷嗎?談一談。旺達(dá)是怎樣面對同學(xué)們的嘲笑?3、轉(zhuǎn)學(xué)之后,十三班的同學(xué)們收到了她爸爸的來信。誰愿意讀讀這封信?圣誕節(jié)來臨之際,旺達(dá)也寫來一封信。學(xué)生讀。讀完這兩封信,大家肯定感慨萬千,一定有很多話想說吧?全班交流課件出示:善良 寬容
教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認(rèn)識吸毒行為,認(rèn)清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠(yuǎn)離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認(rèn)識吸毒成癮的途徑;認(rèn)識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強(qiáng)與毒品違法犯罪作斗爭的自覺性。教學(xué)重點(diǎn):知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。
一、說教材《分?jǐn)?shù)的簡單應(yīng)用》是人教版小學(xué)數(shù)學(xué)三年級上冊第八單元的知識。教材安排主要是先讓學(xué)生理解一個物體或者幾個物體都可以當(dāng)成一個整體進(jìn)行平均分,會把一個整體平均分為幾部分,選擇其中的幾部分。根據(jù)學(xué)生的生活經(jīng)驗(yàn)和知識背景及課本的知識特點(diǎn),本節(jié)課的教學(xué)目標(biāo)定為:1、知識與技能:經(jīng)歷解決問題的過程,能根據(jù)分?jǐn)?shù)的含義,利用整數(shù)乘、除法來解決問題。2、過程與方法:通過分一分、拿一拿,理解情境中的數(shù)量關(guān)系,探求解決求一個數(shù)的幾分之幾的方法.3、情感態(tài)度與價值觀:感悟數(shù)形結(jié)合的思想,初步了解分?jǐn)?shù)的在實(shí)際生活中的應(yīng)用和價值。本課教學(xué)的重點(diǎn)是:引導(dǎo)學(xué)生根據(jù)分?jǐn)?shù)含義分析數(shù)量關(guān)系,并用整數(shù)乘除法來解決問題。
說課內(nèi)容:我說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)一年級上冊第五單元、第三課時、6、7的加減法應(yīng)用。我將從教材分析,教學(xué)目標(biāo)分析,教學(xué)重難點(diǎn)及突破方法,教學(xué)流程設(shè)計,4個方面來進(jìn)行說課。一、說教材:1、內(nèi)容:本節(jié)課是在學(xué)生學(xué)習(xí)6、7加減法的基礎(chǔ)上展開教學(xué)的,教材第一次出現(xiàn)用情景圖呈現(xiàn)數(shù)學(xué)問題的形式,呈現(xiàn)了一個簡單求和求差的數(shù)學(xué)問題,使學(xué)生明確、知道兩個相關(guān)的信息和一個相關(guān)的問題,就構(gòu)成了一個簡單的數(shù)學(xué)問題。2、地位:從整個知識網(wǎng)絡(luò)來看,它也標(biāo)志著數(shù)學(xué)應(yīng)用題數(shù)學(xué)的開始,是向后面的文字應(yīng)用題過度的橋梁。二、說教學(xué)目標(biāo)通過對教材的分析,確立了如下教學(xué)目標(biāo):1.通過學(xué)習(xí)使學(xué)生認(rèn)識理解大括號和問號的意義,能借助圖畫正確分析題意。2.會用6和7的加減法解決生活中簡單問題,使學(xué)生切實(shí)感受到用學(xué)過的數(shù)學(xué)知識去解決簡單的實(shí)際問題的過程。3.初步感受數(shù)學(xué)與日常生活的密切聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
一、說教材1.教學(xué)內(nèi)容:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書人教版小學(xué)數(shù)學(xué)一年級上冊57頁及相關(guān)的練習(xí)題。2.教材的地位和作用:這節(jié)課是人教版小學(xué)數(shù)學(xué)一年級上冊第五單元第57頁的內(nèi)容,是在學(xué)了6、7加減法中的用數(shù)學(xué):金色的秋天后進(jìn)行教學(xué)的。大家知道,新教材中的“用數(shù)學(xué)”,類似于老教材中的應(yīng)用題。通過“用數(shù)學(xué)”教學(xué),既要求學(xué)生找到問題的答案,又要求學(xué)生在解決問題的過程中,掌握數(shù)量關(guān)系和應(yīng)用題的結(jié)構(gòu)特征,為學(xué)習(xí)更復(fù)雜的應(yīng)用題打好基礎(chǔ)。3.教學(xué)目標(biāo):(1)知識目標(biāo):使學(xué)生能夠正確掌握算理,能根據(jù)已知量和問號之間的關(guān)系選擇合適的計算方法列式計算。(2)能力目標(biāo):培養(yǎng)和提高學(xué)生用所學(xué)知識解決實(shí)際問題的能力。(3)情感目標(biāo):讓學(xué)生體驗(yàn)學(xué)數(shù)學(xué),用數(shù)學(xué)的樂趣,在學(xué)習(xí)中感受到熱愛自然保護(hù)環(huán)境方面的教育。4.教學(xué)重點(diǎn):讓學(xué)生用學(xué)過的知識解決簡單的實(shí)際問題。5.教學(xué)難點(diǎn):學(xué)生學(xué)會選擇解決問題的方法。
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
二、探究交流,引導(dǎo)概括 —— 方程為了培養(yǎng)學(xué)生的發(fā)現(xiàn)和抽象概括能力,同時進(jìn)一步理解方程的意義,我讓學(xué)生分組學(xué)習(xí),引導(dǎo)他們先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄?shù)仁降挠泄餐卣?,然后歸納概括什么叫做方程?最后得出:像這樣的含有未知數(shù)的等式,叫做方程。三、討論比較,辨析、概念 —— 等式與方程的關(guān)系為了體現(xiàn)學(xué)生的主體性,培養(yǎng)學(xué)生的合作意識,同時讓學(xué)生在解決問題的過程中得到創(chuàng)造的樂趣。通過四人合作用自己的方法創(chuàng)作 “ 方程 ” 與 “ 等式 ” 的關(guān)系圖,并用自己的話說一說 “ 等式 ” 與 “ 方程 ” 的關(guān)系:方程一定是等式,但等式不一定是方程。四、鞏固深化,拓展思維 —— 練習(xí)1 、“做一做”:2、判斷是否方程3、“方程一定是等式,等式也一定是方程”這句話對嗎?4、叫學(xué)生用圖來表示等式和方程的關(guān)系。